Metamath Proof Explorer


Theorem caovdi

Description: Convert an operation distributive law to class notation. (Contributed by NM, 25-Aug-1995) (Revised by Mario Carneiro, 28-Jun-2013)

Ref Expression
Hypotheses caovdi.1 A V
caovdi.2 B V
caovdi.3 C V
caovdi.4 x G y F z = x G y F x G z
Assertion caovdi A G B F C = A G B F A G C

Proof

Step Hyp Ref Expression
1 caovdi.1 A V
2 caovdi.2 B V
3 caovdi.3 C V
4 caovdi.4 x G y F z = x G y F x G z
5 tru
6 4 a1i x V y V z V x G y F z = x G y F x G z
7 6 caovdig A V B V C V A G B F C = A G B F A G C
8 5 7 mpan A V B V C V A G B F C = A G B F A G C
9 1 2 3 8 mp3an A G B F C = A G B F A G C