Metamath Proof Explorer


Theorem caovdid

Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovdig.1 φ x K y S z S x G y F z = x G y H x G z
caovdid.2 φ A K
caovdid.3 φ B S
caovdid.4 φ C S
Assertion caovdid φ A G B F C = A G B H A G C

Proof

Step Hyp Ref Expression
1 caovdig.1 φ x K y S z S x G y F z = x G y H x G z
2 caovdid.2 φ A K
3 caovdid.3 φ B S
4 caovdid.4 φ C S
5 id φ φ
6 1 caovdig φ A K B S C S A G B F C = A G B H A G C
7 5 2 3 4 6 syl13anc φ A G B F C = A G B H A G C