Metamath Proof Explorer


Theorem caovdig

Description: Convert an operation distributive law to class notation. (Contributed by NM, 25-Aug-1995) (Revised by Mario Carneiro, 26-Jul-2014)

Ref Expression
Hypothesis caovdig.1 φ x K y S z S x G y F z = x G y H x G z
Assertion caovdig φ A K B S C S A G B F C = A G B H A G C

Proof

Step Hyp Ref Expression
1 caovdig.1 φ x K y S z S x G y F z = x G y H x G z
2 1 ralrimivvva φ x K y S z S x G y F z = x G y H x G z
3 oveq1 x = A x G y F z = A G y F z
4 oveq1 x = A x G y = A G y
5 oveq1 x = A x G z = A G z
6 4 5 oveq12d x = A x G y H x G z = A G y H A G z
7 3 6 eqeq12d x = A x G y F z = x G y H x G z A G y F z = A G y H A G z
8 oveq1 y = B y F z = B F z
9 8 oveq2d y = B A G y F z = A G B F z
10 oveq2 y = B A G y = A G B
11 10 oveq1d y = B A G y H A G z = A G B H A G z
12 9 11 eqeq12d y = B A G y F z = A G y H A G z A G B F z = A G B H A G z
13 oveq2 z = C B F z = B F C
14 13 oveq2d z = C A G B F z = A G B F C
15 oveq2 z = C A G z = A G C
16 15 oveq2d z = C A G B H A G z = A G B H A G C
17 14 16 eqeq12d z = C A G B F z = A G B H A G z A G B F C = A G B H A G C
18 7 12 17 rspc3v A K B S C S x K y S z S x G y F z = x G y H x G z A G B F C = A G B H A G C
19 2 18 mpan9 φ A K B S C S A G B F C = A G B H A G C