Metamath Proof Explorer


Theorem caovdir2d

Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovdir2d.1 φ x S y S z S x G y F z = x G y F x G z
caovdir2d.2 φ A S
caovdir2d.3 φ B S
caovdir2d.4 φ C S
caovdir2d.cl φ x S y S x F y S
caovdir2d.com φ x S y S x G y = y G x
Assertion caovdir2d φ A F B G C = A G C F B G C

Proof

Step Hyp Ref Expression
1 caovdir2d.1 φ x S y S z S x G y F z = x G y F x G z
2 caovdir2d.2 φ A S
3 caovdir2d.3 φ B S
4 caovdir2d.4 φ C S
5 caovdir2d.cl φ x S y S x F y S
6 caovdir2d.com φ x S y S x G y = y G x
7 1 4 2 3 caovdid φ C G A F B = C G A F C G B
8 5 2 3 caovcld φ A F B S
9 6 8 4 caovcomd φ A F B G C = C G A F B
10 6 2 4 caovcomd φ A G C = C G A
11 6 3 4 caovcomd φ B G C = C G B
12 10 11 oveq12d φ A G C F B G C = C G A F C G B
13 7 9 12 3eqtr4d φ A F B G C = A G C F B G C