Metamath Proof Explorer


Theorem caovdird

Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovdirg.1 φ x S y S z K x F y G z = x G z H y G z
caovdird.2 φ A S
caovdird.3 φ B S
caovdird.4 φ C K
Assertion caovdird φ A F B G C = A G C H B G C

Proof

Step Hyp Ref Expression
1 caovdirg.1 φ x S y S z K x F y G z = x G z H y G z
2 caovdird.2 φ A S
3 caovdird.3 φ B S
4 caovdird.4 φ C K
5 id φ φ
6 1 caovdirg φ A S B S C K A F B G C = A G C H B G C
7 5 2 3 4 6 syl13anc φ A F B G C = A G C H B G C