Metamath Proof Explorer


Theorem caovdirg

Description: Convert an operation reverse distributive law to class notation. (Contributed by Mario Carneiro, 19-Oct-2014)

Ref Expression
Hypothesis caovdirg.1 φ x S y S z K x F y G z = x G z H y G z
Assertion caovdirg φ A S B S C K A F B G C = A G C H B G C

Proof

Step Hyp Ref Expression
1 caovdirg.1 φ x S y S z K x F y G z = x G z H y G z
2 1 ralrimivvva φ x S y S z K x F y G z = x G z H y G z
3 oveq1 x = A x F y = A F y
4 3 oveq1d x = A x F y G z = A F y G z
5 oveq1 x = A x G z = A G z
6 5 oveq1d x = A x G z H y G z = A G z H y G z
7 4 6 eqeq12d x = A x F y G z = x G z H y G z A F y G z = A G z H y G z
8 oveq2 y = B A F y = A F B
9 8 oveq1d y = B A F y G z = A F B G z
10 oveq1 y = B y G z = B G z
11 10 oveq2d y = B A G z H y G z = A G z H B G z
12 9 11 eqeq12d y = B A F y G z = A G z H y G z A F B G z = A G z H B G z
13 oveq2 z = C A F B G z = A F B G C
14 oveq2 z = C A G z = A G C
15 oveq2 z = C B G z = B G C
16 14 15 oveq12d z = C A G z H B G z = A G C H B G C
17 13 16 eqeq12d z = C A F B G z = A G z H B G z A F B G C = A G C H B G C
18 7 12 17 rspc3v A S B S C K x S y S z K x F y G z = x G z H y G z A F B G C = A G C H B G C
19 2 18 mpan9 φ A S B S C K A F B G C = A G C H B G C