Metamath Proof Explorer


Theorem caovmo

Description: Uniqueness of inverse element in commutative, associative operation with identity. Remark in proof of Proposition 9-2.4 of Gleason p. 119. (Contributed by NM, 4-Mar-1996)

Ref Expression
Hypotheses caovmo.2 B S
caovmo.dom dom F = S × S
caovmo.3 ¬ S
caovmo.com x F y = y F x
caovmo.ass x F y F z = x F y F z
caovmo.id x S x F B = x
Assertion caovmo * w A F w = B

Proof

Step Hyp Ref Expression
1 caovmo.2 B S
2 caovmo.dom dom F = S × S
3 caovmo.3 ¬ S
4 caovmo.com x F y = y F x
5 caovmo.ass x F y F z = x F y F z
6 caovmo.id x S x F B = x
7 oveq1 u = A u F w = A F w
8 7 eqeq1d u = A u F w = B A F w = B
9 8 mobidv u = A * w u F w = B * w A F w = B
10 oveq2 w = v u F w = u F v
11 10 eqeq1d w = v u F w = B u F v = B
12 11 mo4 * w u F w = B w v u F w = B u F v = B w = v
13 simpr u F w = B u F v = B u F v = B
14 13 oveq2d u F w = B u F v = B w F u F v = w F B
15 simpl u F w = B u F v = B u F w = B
16 15 oveq1d u F w = B u F v = B u F w F v = B F v
17 vex u V
18 vex w V
19 vex v V
20 17 18 19 5 caovass u F w F v = u F w F v
21 17 18 19 4 5 caov12 u F w F v = w F u F v
22 20 21 eqtri u F w F v = w F u F v
23 1 elexi B V
24 23 19 4 caovcom B F v = v F B
25 16 22 24 3eqtr3g u F w = B u F v = B w F u F v = v F B
26 14 25 eqtr3d u F w = B u F v = B w F B = v F B
27 15 1 eqeltrdi u F w = B u F v = B u F w S
28 2 3 ndmovrcl u F w S u S w S
29 27 28 syl u F w = B u F v = B u S w S
30 oveq1 x = w x F B = w F B
31 id x = w x = w
32 30 31 eqeq12d x = w x F B = x w F B = w
33 32 6 vtoclga w S w F B = w
34 29 33 simpl2im u F w = B u F v = B w F B = w
35 13 1 eqeltrdi u F w = B u F v = B u F v S
36 2 3 ndmovrcl u F v S u S v S
37 35 36 syl u F w = B u F v = B u S v S
38 oveq1 x = v x F B = v F B
39 id x = v x = v
40 38 39 eqeq12d x = v x F B = x v F B = v
41 40 6 vtoclga v S v F B = v
42 37 41 simpl2im u F w = B u F v = B v F B = v
43 26 34 42 3eqtr3d u F w = B u F v = B w = v
44 43 ax-gen v u F w = B u F v = B w = v
45 12 44 mpgbir * w u F w = B
46 9 45 vtoclg A S * w A F w = B
47 moanimv * w A S A F w = B A S * w A F w = B
48 46 47 mpbir * w A S A F w = B
49 eleq1 A F w = B A F w S B S
50 1 49 mpbiri A F w = B A F w S
51 2 3 ndmovrcl A F w S A S w S
52 50 51 syl A F w = B A S w S
53 52 simpld A F w = B A S
54 53 ancri A F w = B A S A F w = B
55 54 moimi * w A S A F w = B * w A F w = B
56 48 55 ax-mp * w A F w = B