Metamath Proof Explorer


Theorem caovmo

Description: Uniqueness of inverse element in commutative, associative operation with identity. Remark in proof of Proposition 9-2.4 of Gleason p. 119. (Contributed by NM, 4-Mar-1996)

Ref Expression
Hypotheses caovmo.2 BS
caovmo.dom domF=S×S
caovmo.3 ¬S
caovmo.com xFy=yFx
caovmo.ass xFyFz=xFyFz
caovmo.id xSxFB=x
Assertion caovmo *wAFw=B

Proof

Step Hyp Ref Expression
1 caovmo.2 BS
2 caovmo.dom domF=S×S
3 caovmo.3 ¬S
4 caovmo.com xFy=yFx
5 caovmo.ass xFyFz=xFyFz
6 caovmo.id xSxFB=x
7 oveq1 u=AuFw=AFw
8 7 eqeq1d u=AuFw=BAFw=B
9 8 mobidv u=A*wuFw=B*wAFw=B
10 oveq2 w=vuFw=uFv
11 10 eqeq1d w=vuFw=BuFv=B
12 11 mo4 *wuFw=BwvuFw=BuFv=Bw=v
13 simpr uFw=BuFv=BuFv=B
14 13 oveq2d uFw=BuFv=BwFuFv=wFB
15 simpl uFw=BuFv=BuFw=B
16 15 oveq1d uFw=BuFv=BuFwFv=BFv
17 vex uV
18 vex wV
19 vex vV
20 17 18 19 5 caovass uFwFv=uFwFv
21 17 18 19 4 5 caov12 uFwFv=wFuFv
22 20 21 eqtri uFwFv=wFuFv
23 1 elexi BV
24 23 19 4 caovcom BFv=vFB
25 16 22 24 3eqtr3g uFw=BuFv=BwFuFv=vFB
26 14 25 eqtr3d uFw=BuFv=BwFB=vFB
27 15 1 eqeltrdi uFw=BuFv=BuFwS
28 2 3 ndmovrcl uFwSuSwS
29 27 28 syl uFw=BuFv=BuSwS
30 oveq1 x=wxFB=wFB
31 id x=wx=w
32 30 31 eqeq12d x=wxFB=xwFB=w
33 32 6 vtoclga wSwFB=w
34 29 33 simpl2im uFw=BuFv=BwFB=w
35 13 1 eqeltrdi uFw=BuFv=BuFvS
36 2 3 ndmovrcl uFvSuSvS
37 35 36 syl uFw=BuFv=BuSvS
38 oveq1 x=vxFB=vFB
39 id x=vx=v
40 38 39 eqeq12d x=vxFB=xvFB=v
41 40 6 vtoclga vSvFB=v
42 37 41 simpl2im uFw=BuFv=BvFB=v
43 26 34 42 3eqtr3d uFw=BuFv=Bw=v
44 43 ax-gen vuFw=BuFv=Bw=v
45 12 44 mpgbir *wuFw=B
46 9 45 vtoclg AS*wAFw=B
47 moanimv *wASAFw=BAS*wAFw=B
48 46 47 mpbir *wASAFw=B
49 eleq1 AFw=BAFwSBS
50 1 49 mpbiri AFw=BAFwS
51 2 3 ndmovrcl AFwSASwS
52 50 51 syl AFw=BASwS
53 52 simpld AFw=BAS
54 53 ancri AFw=BASAFw=B
55 54 moimi *wASAFw=B*wAFw=B
56 48 55 ax-mp *wAFw=B