Description: Uniqueness of inverse element in commutative, associative operation with identity. Remark in proof of Proposition 9-2.4 of Gleason p. 119. (Contributed by NM, 4-Mar-1996)
Ref | Expression | ||
---|---|---|---|
Hypotheses | caovmo.2 | |
|
caovmo.dom | |
||
caovmo.3 | |
||
caovmo.com | |
||
caovmo.ass | |
||
caovmo.id | |
||
Assertion | caovmo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovmo.2 | |
|
2 | caovmo.dom | |
|
3 | caovmo.3 | |
|
4 | caovmo.com | |
|
5 | caovmo.ass | |
|
6 | caovmo.id | |
|
7 | oveq1 | |
|
8 | 7 | eqeq1d | |
9 | 8 | mobidv | |
10 | oveq2 | |
|
11 | 10 | eqeq1d | |
12 | 11 | mo4 | |
13 | simpr | |
|
14 | 13 | oveq2d | |
15 | simpl | |
|
16 | 15 | oveq1d | |
17 | vex | |
|
18 | vex | |
|
19 | vex | |
|
20 | 17 18 19 5 | caovass | |
21 | 17 18 19 4 5 | caov12 | |
22 | 20 21 | eqtri | |
23 | 1 | elexi | |
24 | 23 19 4 | caovcom | |
25 | 16 22 24 | 3eqtr3g | |
26 | 14 25 | eqtr3d | |
27 | 15 1 | eqeltrdi | |
28 | 2 3 | ndmovrcl | |
29 | 27 28 | syl | |
30 | oveq1 | |
|
31 | id | |
|
32 | 30 31 | eqeq12d | |
33 | 32 6 | vtoclga | |
34 | 29 33 | simpl2im | |
35 | 13 1 | eqeltrdi | |
36 | 2 3 | ndmovrcl | |
37 | 35 36 | syl | |
38 | oveq1 | |
|
39 | id | |
|
40 | 38 39 | eqeq12d | |
41 | 40 6 | vtoclga | |
42 | 37 41 | simpl2im | |
43 | 26 34 42 | 3eqtr3d | |
44 | 43 | ax-gen | |
45 | 12 44 | mpgbir | |
46 | 9 45 | vtoclg | |
47 | moanimv | |
|
48 | 46 47 | mpbir | |
49 | eleq1 | |
|
50 | 1 49 | mpbiri | |
51 | 2 3 | ndmovrcl | |
52 | 50 51 | syl | |
53 | 52 | simpld | |
54 | 53 | ancri | |
55 | 54 | moimi | |
56 | 48 55 | ax-mp | |