Metamath Proof Explorer


Theorem caovord

Description: Convert an operation ordering law to class notation. (Contributed by NM, 19-Feb-1996)

Ref Expression
Hypotheses caovord.1 A V
caovord.2 B V
caovord.3 z S x R y z F x R z F y
Assertion caovord C S A R B C F A R C F B

Proof

Step Hyp Ref Expression
1 caovord.1 A V
2 caovord.2 B V
3 caovord.3 z S x R y z F x R z F y
4 oveq1 z = C z F A = C F A
5 oveq1 z = C z F B = C F B
6 4 5 breq12d z = C z F A R z F B C F A R C F B
7 6 bibi2d z = C A R B z F A R z F B A R B C F A R C F B
8 breq1 x = A x R y A R y
9 oveq2 x = A z F x = z F A
10 9 breq1d x = A z F x R z F y z F A R z F y
11 8 10 bibi12d x = A x R y z F x R z F y A R y z F A R z F y
12 breq2 y = B A R y A R B
13 oveq2 y = B z F y = z F B
14 13 breq2d y = B z F A R z F y z F A R z F B
15 12 14 bibi12d y = B A R y z F A R z F y A R B z F A R z F B
16 11 15 sylan9bb x = A y = B x R y z F x R z F y A R B z F A R z F B
17 16 imbi2d x = A y = B z S x R y z F x R z F y z S A R B z F A R z F B
18 1 2 17 3 vtocl2 z S A R B z F A R z F B
19 7 18 vtoclga C S A R B C F A R C F B