Metamath Proof Explorer


Theorem caovord2

Description: Operation ordering law with commuted arguments. (Contributed by NM, 27-Feb-1996)

Ref Expression
Hypotheses caovord.1 A V
caovord.2 B V
caovord.3 z S x R y z F x R z F y
caovord2.3 C V
caovord2.com x F y = y F x
Assertion caovord2 C S A R B A F C R B F C

Proof

Step Hyp Ref Expression
1 caovord.1 A V
2 caovord.2 B V
3 caovord.3 z S x R y z F x R z F y
4 caovord2.3 C V
5 caovord2.com x F y = y F x
6 1 2 3 caovord C S A R B C F A R C F B
7 4 1 5 caovcom C F A = A F C
8 4 2 5 caovcom C F B = B F C
9 7 8 breq12i C F A R C F B A F C R B F C
10 6 9 bitrdi C S A R B A F C R B F C