Metamath Proof Explorer


Theorem caovord2d

Description: Operation ordering law with commuted arguments. (Contributed by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovordg.1 φ x S y S z S x R y z F x R z F y
caovordd.2 φ A S
caovordd.3 φ B S
caovordd.4 φ C S
caovord2d.com φ x S y S x F y = y F x
Assertion caovord2d φ A R B A F C R B F C

Proof

Step Hyp Ref Expression
1 caovordg.1 φ x S y S z S x R y z F x R z F y
2 caovordd.2 φ A S
3 caovordd.3 φ B S
4 caovordd.4 φ C S
5 caovord2d.com φ x S y S x F y = y F x
6 1 2 3 4 caovordd φ A R B C F A R C F B
7 5 4 2 caovcomd φ C F A = A F C
8 5 4 3 caovcomd φ C F B = B F C
9 7 8 breq12d φ C F A R C F B A F C R B F C
10 6 9 bitrd φ A R B A F C R B F C