Metamath Proof Explorer


Theorem caovord3

Description: Ordering law. (Contributed by NM, 29-Feb-1996)

Ref Expression
Hypotheses caovord.1 A V
caovord.2 B V
caovord.3 z S x R y z F x R z F y
caovord2.3 C V
caovord2.com x F y = y F x
caovord3.4 D V
Assertion caovord3 B S C S A F B = C F D A R C D R B

Proof

Step Hyp Ref Expression
1 caovord.1 A V
2 caovord.2 B V
3 caovord.3 z S x R y z F x R z F y
4 caovord2.3 C V
5 caovord2.com x F y = y F x
6 caovord3.4 D V
7 1 4 3 2 5 caovord2 B S A R C A F B R C F B
8 7 adantr B S C S A R C A F B R C F B
9 breq1 A F B = C F D A F B R C F B C F D R C F B
10 8 9 sylan9bb B S C S A F B = C F D A R C C F D R C F B
11 6 2 3 caovord C S D R B C F D R C F B
12 11 ad2antlr B S C S A F B = C F D D R B C F D R C F B
13 10 12 bitr4d B S C S A F B = C F D A R C D R B