Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Operations
Variable-to-class conversion for operations
caovord3
Next ⟩
caovdig
Metamath Proof Explorer
Ascii
Unicode
Theorem
caovord3
Description:
Ordering law.
(Contributed by
NM
, 29-Feb-1996)
Ref
Expression
Hypotheses
caovord.1
⊢
A
∈
V
caovord.2
⊢
B
∈
V
caovord.3
⊢
z
∈
S
→
x
R
y
↔
z
F
x
R
z
F
y
caovord2.3
⊢
C
∈
V
caovord2.com
⊢
x
F
y
=
y
F
x
caovord3.4
⊢
D
∈
V
Assertion
caovord3
⊢
B
∈
S
∧
C
∈
S
∧
A
F
B
=
C
F
D
→
A
R
C
↔
D
R
B
Proof
Step
Hyp
Ref
Expression
1
caovord.1
⊢
A
∈
V
2
caovord.2
⊢
B
∈
V
3
caovord.3
⊢
z
∈
S
→
x
R
y
↔
z
F
x
R
z
F
y
4
caovord2.3
⊢
C
∈
V
5
caovord2.com
⊢
x
F
y
=
y
F
x
6
caovord3.4
⊢
D
∈
V
7
1
4
3
2
5
caovord2
⊢
B
∈
S
→
A
R
C
↔
A
F
B
R
C
F
B
8
7
adantr
⊢
B
∈
S
∧
C
∈
S
→
A
R
C
↔
A
F
B
R
C
F
B
9
breq1
⊢
A
F
B
=
C
F
D
→
A
F
B
R
C
F
B
↔
C
F
D
R
C
F
B
10
8
9
sylan9bb
⊢
B
∈
S
∧
C
∈
S
∧
A
F
B
=
C
F
D
→
A
R
C
↔
C
F
D
R
C
F
B
11
6
2
3
caovord
⊢
C
∈
S
→
D
R
B
↔
C
F
D
R
C
F
B
12
11
ad2antlr
⊢
B
∈
S
∧
C
∈
S
∧
A
F
B
=
C
F
D
→
D
R
B
↔
C
F
D
R
C
F
B
13
10
12
bitr4d
⊢
B
∈
S
∧
C
∈
S
∧
A
F
B
=
C
F
D
→
A
R
C
↔
D
R
B