Metamath Proof Explorer


Theorem caovord3d

Description: Ordering law. (Contributed by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovordg.1 φ x S y S z S x R y z F x R z F y
caovordd.2 φ A S
caovordd.3 φ B S
caovordd.4 φ C S
caovord2d.com φ x S y S x F y = y F x
caovord3d.5 φ D S
Assertion caovord3d φ A F B = C F D A R C D R B

Proof

Step Hyp Ref Expression
1 caovordg.1 φ x S y S z S x R y z F x R z F y
2 caovordd.2 φ A S
3 caovordd.3 φ B S
4 caovordd.4 φ C S
5 caovord2d.com φ x S y S x F y = y F x
6 caovord3d.5 φ D S
7 breq1 A F B = C F D A F B R C F B C F D R C F B
8 1 2 4 3 5 caovord2d φ A R C A F B R C F B
9 1 6 3 4 caovordd φ D R B C F D R C F B
10 8 9 bibi12d φ A R C D R B A F B R C F B C F D R C F B
11 7 10 syl5ibr φ A F B = C F D A R C D R B