Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Operations
Variable-to-class conversion for operations
caovord3d
Next ⟩
caovord
Metamath Proof Explorer
Ascii
Unicode
Theorem
caovord3d
Description:
Ordering law.
(Contributed by
Mario Carneiro
, 30-Dec-2014)
Ref
Expression
Hypotheses
caovordg.1
⊢
φ
∧
x
∈
S
∧
y
∈
S
∧
z
∈
S
→
x
R
y
↔
z
F
x
R
z
F
y
caovordd.2
⊢
φ
→
A
∈
S
caovordd.3
⊢
φ
→
B
∈
S
caovordd.4
⊢
φ
→
C
∈
S
caovord2d.com
⊢
φ
∧
x
∈
S
∧
y
∈
S
→
x
F
y
=
y
F
x
caovord3d.5
⊢
φ
→
D
∈
S
Assertion
caovord3d
⊢
φ
→
A
F
B
=
C
F
D
→
A
R
C
↔
D
R
B
Proof
Step
Hyp
Ref
Expression
1
caovordg.1
⊢
φ
∧
x
∈
S
∧
y
∈
S
∧
z
∈
S
→
x
R
y
↔
z
F
x
R
z
F
y
2
caovordd.2
⊢
φ
→
A
∈
S
3
caovordd.3
⊢
φ
→
B
∈
S
4
caovordd.4
⊢
φ
→
C
∈
S
5
caovord2d.com
⊢
φ
∧
x
∈
S
∧
y
∈
S
→
x
F
y
=
y
F
x
6
caovord3d.5
⊢
φ
→
D
∈
S
7
breq1
⊢
A
F
B
=
C
F
D
→
A
F
B
R
C
F
B
↔
C
F
D
R
C
F
B
8
1
2
4
3
5
caovord2d
⊢
φ
→
A
R
C
↔
A
F
B
R
C
F
B
9
1
6
3
4
caovordd
⊢
φ
→
D
R
B
↔
C
F
D
R
C
F
B
10
8
9
bibi12d
⊢
φ
→
A
R
C
↔
D
R
B
↔
A
F
B
R
C
F
B
↔
C
F
D
R
C
F
B
11
7
10
syl5ibr
⊢
φ
→
A
F
B
=
C
F
D
→
A
R
C
↔
D
R
B