Metamath Proof Explorer


Theorem caovordd

Description: Convert an operation ordering law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovordg.1 φ x S y S z S x R y z F x R z F y
caovordd.2 φ A S
caovordd.3 φ B S
caovordd.4 φ C S
Assertion caovordd φ A R B C F A R C F B

Proof

Step Hyp Ref Expression
1 caovordg.1 φ x S y S z S x R y z F x R z F y
2 caovordd.2 φ A S
3 caovordd.3 φ B S
4 caovordd.4 φ C S
5 id φ φ
6 1 caovordg φ A S B S C S A R B C F A R C F B
7 5 2 3 4 6 syl13anc φ A R B C F A R C F B