Metamath Proof Explorer


Theorem caovordg

Description: Convert an operation ordering law to class notation. (Contributed by NM, 19-Feb-1996) (Revised by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypothesis caovordg.1 φ x S y S z S x R y z F x R z F y
Assertion caovordg φ A S B S C S A R B C F A R C F B

Proof

Step Hyp Ref Expression
1 caovordg.1 φ x S y S z S x R y z F x R z F y
2 1 ralrimivvva φ x S y S z S x R y z F x R z F y
3 breq1 x = A x R y A R y
4 oveq2 x = A z F x = z F A
5 4 breq1d x = A z F x R z F y z F A R z F y
6 3 5 bibi12d x = A x R y z F x R z F y A R y z F A R z F y
7 breq2 y = B A R y A R B
8 oveq2 y = B z F y = z F B
9 8 breq2d y = B z F A R z F y z F A R z F B
10 7 9 bibi12d y = B A R y z F A R z F y A R B z F A R z F B
11 oveq1 z = C z F A = C F A
12 oveq1 z = C z F B = C F B
13 11 12 breq12d z = C z F A R z F B C F A R C F B
14 13 bibi2d z = C A R B z F A R z F B A R B C F A R C F B
15 6 10 14 rspc3v A S B S C S x S y S z S x R y z F x R z F y A R B C F A R C F B
16 2 15 mpan9 φ A S B S C S A R B C F A R C F B