Metamath Proof Explorer


Theorem caovordid

Description: Convert an operation ordering law to class notation. (Contributed by Mario Carneiro, 31-Dec-2014)

Ref Expression
Hypotheses caovordig.1 φ x S y S z S x R y z F x R z F y
caovordid.2 φ A S
caovordid.3 φ B S
caovordid.4 φ C S
Assertion caovordid φ A R B C F A R C F B

Proof

Step Hyp Ref Expression
1 caovordig.1 φ x S y S z S x R y z F x R z F y
2 caovordid.2 φ A S
3 caovordid.3 φ B S
4 caovordid.4 φ C S
5 id φ φ
6 1 caovordig φ A S B S C S A R B C F A R C F B
7 5 2 3 4 6 syl13anc φ A R B C F A R C F B