Metamath Proof Explorer


Theorem card2on

Description: The alternate definition of the cardinal of a set given in cardval2 always gives a set, and indeed an ordinal. (Contributed by Mario Carneiro, 14-Jan-2013)

Ref Expression
Assertion card2on x On | x A On

Proof

Step Hyp Ref Expression
1 onelon z On y z y On
2 vex z V
3 onelss z On y z y z
4 3 imp z On y z y z
5 ssdomg z V y z y z
6 2 4 5 mpsyl z On y z y z
7 1 6 jca z On y z y On y z
8 domsdomtr y z z A y A
9 8 anim2i y On y z z A y On y A
10 9 anassrs y On y z z A y On y A
11 7 10 sylan z On y z z A y On y A
12 11 exp31 z On y z z A y On y A
13 12 com12 y z z On z A y On y A
14 13 impd y z z On z A y On y A
15 breq1 x = z x A z A
16 15 elrab z x On | x A z On z A
17 breq1 x = y x A y A
18 17 elrab y x On | x A y On y A
19 14 16 18 3imtr4g y z z x On | x A y x On | x A
20 19 imp y z z x On | x A y x On | x A
21 20 gen2 y z y z z x On | x A y x On | x A
22 dftr2 Tr x On | x A y z y z z x On | x A y x On | x A
23 21 22 mpbir Tr x On | x A
24 ssrab2 x On | x A On
25 ordon Ord On
26 trssord Tr x On | x A x On | x A On Ord On Ord x On | x A
27 23 24 25 26 mp3an Ord x On | x A
28 hartogs A V x On | x A On
29 sdomdom x A x A
30 29 a1i x On x A x A
31 30 ss2rabi x On | x A x On | x A
32 ssexg x On | x A x On | x A x On | x A On x On | x A V
33 31 32 mpan x On | x A On x On | x A V
34 elong x On | x A V x On | x A On Ord x On | x A
35 28 33 34 3syl A V x On | x A On Ord x On | x A
36 27 35 mpbiri A V x On | x A On
37 0elon On
38 eleq1 x On | x A = x On | x A On On
39 37 38 mpbiri x On | x A = x On | x A On
40 df-ne x On | x A ¬ x On | x A =
41 rabn0 x On | x A x On x A
42 40 41 bitr3i ¬ x On | x A = x On x A
43 relsdom Rel
44 43 brrelex2i x A A V
45 44 rexlimivw x On x A A V
46 42 45 sylbi ¬ x On | x A = A V
47 39 46 nsyl4 ¬ A V x On | x A On
48 36 47 pm2.61i x On | x A On