Metamath Proof Explorer


Theorem cardadju

Description: The cardinal sum is equinumerous to an ordinal sum of the cardinals. (Contributed by Mario Carneiro, 6-Feb-2013) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion cardadju AdomcardBdomcardA⊔︀BcardA+𝑜cardB

Proof

Step Hyp Ref Expression
1 cardon cardAOn
2 cardon cardBOn
3 onadju cardAOncardBOncardA+𝑜cardBcardA⊔︀cardB
4 1 2 3 mp2an cardA+𝑜cardBcardA⊔︀cardB
5 cardid2 AdomcardcardAA
6 cardid2 BdomcardcardBB
7 djuen cardAAcardBBcardA⊔︀cardBA⊔︀B
8 5 6 7 syl2an AdomcardBdomcardcardA⊔︀cardBA⊔︀B
9 entr cardA+𝑜cardBcardA⊔︀cardBcardA⊔︀cardBA⊔︀BcardA+𝑜cardBA⊔︀B
10 4 8 9 sylancr AdomcardBdomcardcardA+𝑜cardBA⊔︀B
11 10 ensymd AdomcardBdomcardA⊔︀BcardA+𝑜cardB