Metamath Proof Explorer


Theorem cardcf

Description: Cofinality is a cardinal number. Proposition 11.11 of TakeutiZaring p. 103. (Contributed by NM, 24-Apr-2004) (Revised by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion cardcf card cf A = cf A

Proof

Step Hyp Ref Expression
1 cfval A On cf A = x | y x = card y y A z A w y z w
2 vex v V
3 eqeq1 x = v x = card y v = card y
4 3 anbi1d x = v x = card y y A z A w y z w v = card y y A z A w y z w
5 4 exbidv x = v y x = card y y A z A w y z w y v = card y y A z A w y z w
6 2 5 elab v x | y x = card y y A z A w y z w y v = card y y A z A w y z w
7 fveq2 v = card y card v = card card y
8 cardidm card card y = card y
9 7 8 eqtrdi v = card y card v = card y
10 eqeq2 v = card y card v = v card v = card y
11 9 10 mpbird v = card y card v = v
12 11 adantr v = card y y A z A w y z w card v = v
13 12 exlimiv y v = card y y A z A w y z w card v = v
14 6 13 sylbi v x | y x = card y y A z A w y z w card v = v
15 cardon card v On
16 14 15 eqeltrrdi v x | y x = card y y A z A w y z w v On
17 16 ssriv x | y x = card y y A z A w y z w On
18 fvex cf A V
19 1 18 eqeltrrdi A On x | y x = card y y A z A w y z w V
20 intex x | y x = card y y A z A w y z w x | y x = card y y A z A w y z w V
21 19 20 sylibr A On x | y x = card y y A z A w y z w
22 onint x | y x = card y y A z A w y z w On x | y x = card y y A z A w y z w x | y x = card y y A z A w y z w x | y x = card y y A z A w y z w
23 17 21 22 sylancr A On x | y x = card y y A z A w y z w x | y x = card y y A z A w y z w
24 1 23 eqeltrd A On cf A x | y x = card y y A z A w y z w
25 fveq2 v = cf A card v = card cf A
26 id v = cf A v = cf A
27 25 26 eqeq12d v = cf A card v = v card cf A = cf A
28 27 14 vtoclga cf A x | y x = card y y A z A w y z w card cf A = cf A
29 24 28 syl A On card cf A = cf A
30 cff cf : On On
31 30 fdmi dom cf = On
32 31 eleq2i A dom cf A On
33 ndmfv ¬ A dom cf cf A =
34 32 33 sylnbir ¬ A On cf A =
35 card0 card =
36 fveq2 cf A = card cf A = card
37 id cf A = cf A =
38 35 36 37 3eqtr4a cf A = card cf A = cf A
39 34 38 syl ¬ A On card cf A = cf A
40 29 39 pm2.61i card cf A = cf A