Database
ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
ZFC Set Theory - add the Axiom of Choice
Cardinal number theorems using Axiom of Choice
cardeq0
Next ⟩
unsnen
Metamath Proof Explorer
Ascii
Unicode
Theorem
cardeq0
Description:
Only the empty set has cardinality zero.
(Contributed by
NM
, 23-Apr-2004)
Ref
Expression
Assertion
cardeq0
⊢
A
∈
V
→
card
⁡
A
=
∅
↔
A
=
∅
Proof
Step
Hyp
Ref
Expression
1
0ex
⊢
∅
∈
V
2
carden
⊢
A
∈
V
∧
∅
∈
V
→
card
⁡
A
=
card
⁡
∅
↔
A
≈
∅
3
1
2
mpan2
⊢
A
∈
V
→
card
⁡
A
=
card
⁡
∅
↔
A
≈
∅
4
card0
⊢
card
⁡
∅
=
∅
5
4
eqeq2i
⊢
card
⁡
A
=
card
⁡
∅
↔
card
⁡
A
=
∅
6
en0
⊢
A
≈
∅
↔
A
=
∅
7
3
5
6
3bitr3g
⊢
A
∈
V
→
card
⁡
A
=
∅
↔
A
=
∅