Metamath Proof Explorer


Theorem cardfz

Description: The cardinality of a finite set of sequential integers. (See om2uz0i for a description of the hypothesis.) (Contributed by NM, 7-Nov-2008) (Revised by Mario Carneiro, 15-Sep-2013)

Ref Expression
Hypothesis fzennn.1 G = rec x V x + 1 0 ω
Assertion cardfz N 0 card 1 N = G -1 N

Proof

Step Hyp Ref Expression
1 fzennn.1 G = rec x V x + 1 0 ω
2 1 fzennn N 0 1 N G -1 N
3 carden2b 1 N G -1 N card 1 N = card G -1 N
4 2 3 syl N 0 card 1 N = card G -1 N
5 0z 0
6 5 1 om2uzf1oi G : ω 1-1 onto 0
7 elnn0uz N 0 N 0
8 7 biimpi N 0 N 0
9 f1ocnvdm G : ω 1-1 onto 0 N 0 G -1 N ω
10 6 8 9 sylancr N 0 G -1 N ω
11 cardnn G -1 N ω card G -1 N = G -1 N
12 10 11 syl N 0 card G -1 N = G -1 N
13 4 12 eqtrd N 0 card 1 N = G -1 N