Metamath Proof Explorer


Theorem cardmin2

Description: The smallest ordinal that strictly dominates a set is a cardinal, if it exists. (Contributed by Mario Carneiro, 2-Feb-2013)

Ref Expression
Assertion cardmin2 x On A x card x On | A x = x On | A x

Proof

Step Hyp Ref Expression
1 onintrab2 x On A x x On | A x On
2 1 biimpi x On A x x On | A x On
3 2 adantr x On A x y x On | A x x On | A x On
4 eloni x On | A x On Ord x On | A x
5 ordelss Ord x On | A x y x On | A x y x On | A x
6 4 5 sylan x On | A x On y x On | A x y x On | A x
7 1 6 sylanb x On A x y x On | A x y x On | A x
8 ssdomg x On | A x On y x On | A x y x On | A x
9 3 7 8 sylc x On A x y x On | A x y x On | A x
10 onelon x On | A x On y x On | A x y On
11 1 10 sylanb x On A x y x On | A x y On
12 nfcv _ x A
13 nfcv _ x
14 nfrab1 _ x x On | A x
15 14 nfint _ x x On | A x
16 12 13 15 nfbr x A x On | A x
17 breq2 x = x On | A x A x A x On | A x
18 16 17 onminsb x On A x A x On | A x
19 sdomentr A x On | A x x On | A x y A y
20 18 19 sylan x On A x x On | A x y A y
21 breq2 x = y A x A y
22 21 elrab y x On | A x y On A y
23 ssrab2 x On | A x On
24 onnmin x On | A x On y x On | A x ¬ y x On | A x
25 23 24 mpan y x On | A x ¬ y x On | A x
26 22 25 sylbir y On A y ¬ y x On | A x
27 26 expcom A y y On ¬ y x On | A x
28 20 27 syl x On A x x On | A x y y On ¬ y x On | A x
29 28 impancom x On A x y On x On | A x y ¬ y x On | A x
30 29 con2d x On A x y On y x On | A x ¬ x On | A x y
31 30 impancom x On A x y x On | A x y On ¬ x On | A x y
32 11 31 mpd x On A x y x On | A x ¬ x On | A x y
33 ensym y x On | A x x On | A x y
34 32 33 nsyl x On A x y x On | A x ¬ y x On | A x
35 brsdom y x On | A x y x On | A x ¬ y x On | A x
36 9 34 35 sylanbrc x On A x y x On | A x y x On | A x
37 36 ralrimiva x On A x y x On | A x y x On | A x
38 iscard card x On | A x = x On | A x x On | A x On y x On | A x y x On | A x
39 2 37 38 sylanbrc x On A x card x On | A x = x On | A x
40 vprc ¬ V V
41 inteq x On | A x = x On | A x =
42 int0 = V
43 41 42 eqtrdi x On | A x = x On | A x = V
44 43 eleq1d x On | A x = x On | A x V V V
45 40 44 mtbiri x On | A x = ¬ x On | A x V
46 fvex card x On | A x V
47 eleq1 card x On | A x = x On | A x card x On | A x V x On | A x V
48 46 47 mpbii card x On | A x = x On | A x x On | A x V
49 45 48 nsyl x On | A x = ¬ card x On | A x = x On | A x
50 49 necon2ai card x On | A x = x On | A x x On | A x
51 rabn0 x On | A x x On A x
52 50 51 sylib card x On | A x = x On | A x x On A x
53 39 52 impbii x On A x card x On | A x = x On | A x