Step |
Hyp |
Ref |
Expression |
1 |
|
onintrab2 |
|
2 |
1
|
biimpi |
|
3 |
2
|
adantr |
|
4 |
|
eloni |
|
5 |
|
ordelss |
|
6 |
4 5
|
sylan |
|
7 |
1 6
|
sylanb |
|
8 |
|
ssdomg |
|
9 |
3 7 8
|
sylc |
|
10 |
|
onelon |
|
11 |
1 10
|
sylanb |
|
12 |
|
nfcv |
|
13 |
|
nfcv |
|
14 |
|
nfrab1 |
|
15 |
14
|
nfint |
|
16 |
12 13 15
|
nfbr |
|
17 |
|
breq2 |
|
18 |
16 17
|
onminsb |
|
19 |
|
sdomentr |
|
20 |
18 19
|
sylan |
|
21 |
|
breq2 |
|
22 |
21
|
elrab |
|
23 |
|
ssrab2 |
|
24 |
|
onnmin |
|
25 |
23 24
|
mpan |
|
26 |
22 25
|
sylbir |
|
27 |
26
|
expcom |
|
28 |
20 27
|
syl |
|
29 |
28
|
impancom |
|
30 |
29
|
con2d |
|
31 |
30
|
impancom |
|
32 |
11 31
|
mpd |
|
33 |
|
ensym |
|
34 |
32 33
|
nsyl |
|
35 |
|
brsdom |
|
36 |
9 34 35
|
sylanbrc |
|
37 |
36
|
ralrimiva |
|
38 |
|
iscard |
|
39 |
2 37 38
|
sylanbrc |
|
40 |
|
vprc |
|
41 |
|
inteq |
|
42 |
|
int0 |
|
43 |
41 42
|
eqtrdi |
|
44 |
43
|
eleq1d |
|
45 |
40 44
|
mtbiri |
|
46 |
|
fvex |
|
47 |
|
eleq1 |
|
48 |
46 47
|
mpbii |
|
49 |
45 48
|
nsyl |
|
50 |
49
|
necon2ai |
|
51 |
|
rabn0 |
|
52 |
50 51
|
sylib |
|
53 |
39 52
|
impbii |
|