Metamath Proof Explorer


Theorem cases

Description: Case disjunction according to the value of ph . (Contributed by NM, 25-Apr-2019)

Ref Expression
Hypotheses cases.1 φ ψ χ
cases.2 ¬ φ ψ θ
Assertion cases ψ φ χ ¬ φ θ

Proof

Step Hyp Ref Expression
1 cases.1 φ ψ χ
2 cases.2 ¬ φ ψ θ
3 exmid φ ¬ φ
4 3 biantrur ψ φ ¬ φ ψ
5 andir φ ¬ φ ψ φ ψ ¬ φ ψ
6 1 pm5.32i φ ψ φ χ
7 2 pm5.32i ¬ φ ψ ¬ φ θ
8 6 7 orbi12i φ ψ ¬ φ ψ φ χ ¬ φ θ
9 4 5 8 3bitri ψ φ χ ¬ φ θ