Metamath Proof Explorer


Theorem cat1

Description: The definition of category df-cat does not impose pairwise disjoint hom-sets as required in Axiom CAT 1 in Lang p. 53. See setc2obas and setc2ohom for a counterexample. For a version with pairwise disjoint hom-sets, see df-homa and its subsection. (Contributed by Zhi Wang, 15-Sep-2024)

Ref Expression
Assertion cat1 c Cat [˙Base c / b]˙ [˙ Hom c / h]˙ ¬ x b y b z b w b x h y z h w x = z y = w

Proof

Step Hyp Ref Expression
1 2on 2 𝑜 On
2 eqid SetCat 2 𝑜 = SetCat 2 𝑜
3 2 setccat 2 𝑜 On SetCat 2 𝑜 Cat
4 1 3 ax-mp SetCat 2 𝑜 Cat
5 1 a1i 2 𝑜 On
6 eqid Base SetCat 2 𝑜 = Base SetCat 2 𝑜
7 eqid Hom SetCat 2 𝑜 = Hom SetCat 2 𝑜
8 0ex V
9 8 prid1
10 df2o2 2 𝑜 =
11 9 10 eleqtrri 2 𝑜
12 11 a1i 2 𝑜
13 p0ex V
14 13 prid2
15 14 10 eleqtrri 2 𝑜
16 15 a1i 2 𝑜
17 0nep0
18 17 a1i
19 2 5 6 7 12 16 18 cat1lem x Base SetCat 2 𝑜 y Base SetCat 2 𝑜 z Base SetCat 2 𝑜 w Base SetCat 2 𝑜 x Hom SetCat 2 𝑜 y z Hom SetCat 2 𝑜 w ¬ x = z y = w
20 19 mptru x Base SetCat 2 𝑜 y Base SetCat 2 𝑜 z Base SetCat 2 𝑜 w Base SetCat 2 𝑜 x Hom SetCat 2 𝑜 y z Hom SetCat 2 𝑜 w ¬ x = z y = w
21 fvexd c = SetCat 2 𝑜 Base c V
22 fveq2 c = SetCat 2 𝑜 Base c = Base SetCat 2 𝑜
23 fvexd c = SetCat 2 𝑜 b = Base SetCat 2 𝑜 Hom c V
24 fveq2 c = SetCat 2 𝑜 Hom c = Hom SetCat 2 𝑜
25 24 adantr c = SetCat 2 𝑜 b = Base SetCat 2 𝑜 Hom c = Hom SetCat 2 𝑜
26 oveq h = Hom SetCat 2 𝑜 x h y = x Hom SetCat 2 𝑜 y
27 oveq h = Hom SetCat 2 𝑜 z h w = z Hom SetCat 2 𝑜 w
28 26 27 ineq12d h = Hom SetCat 2 𝑜 x h y z h w = x Hom SetCat 2 𝑜 y z Hom SetCat 2 𝑜 w
29 28 neeq1d h = Hom SetCat 2 𝑜 x h y z h w x Hom SetCat 2 𝑜 y z Hom SetCat 2 𝑜 w
30 29 anbi1d h = Hom SetCat 2 𝑜 x h y z h w ¬ x = z y = w x Hom SetCat 2 𝑜 y z Hom SetCat 2 𝑜 w ¬ x = z y = w
31 30 2rexbidv h = Hom SetCat 2 𝑜 z b w b x h y z h w ¬ x = z y = w z b w b x Hom SetCat 2 𝑜 y z Hom SetCat 2 𝑜 w ¬ x = z y = w
32 31 2rexbidv h = Hom SetCat 2 𝑜 x b y b z b w b x h y z h w ¬ x = z y = w x b y b z b w b x Hom SetCat 2 𝑜 y z Hom SetCat 2 𝑜 w ¬ x = z y = w
33 32 adantl c = SetCat 2 𝑜 b = Base SetCat 2 𝑜 h = Hom SetCat 2 𝑜 x b y b z b w b x h y z h w ¬ x = z y = w x b y b z b w b x Hom SetCat 2 𝑜 y z Hom SetCat 2 𝑜 w ¬ x = z y = w
34 pm4.61 ¬ x h y z h w x = z y = w x h y z h w ¬ x = z y = w
35 34 2rexbii z b w b ¬ x h y z h w x = z y = w z b w b x h y z h w ¬ x = z y = w
36 rexnal2 z b w b ¬ x h y z h w x = z y = w ¬ z b w b x h y z h w x = z y = w
37 35 36 bitr3i z b w b x h y z h w ¬ x = z y = w ¬ z b w b x h y z h w x = z y = w
38 37 2rexbii x b y b z b w b x h y z h w ¬ x = z y = w x b y b ¬ z b w b x h y z h w x = z y = w
39 rexnal2 x b y b ¬ z b w b x h y z h w x = z y = w ¬ x b y b z b w b x h y z h w x = z y = w
40 38 39 bitri x b y b z b w b x h y z h w ¬ x = z y = w ¬ x b y b z b w b x h y z h w x = z y = w
41 40 a1i c = SetCat 2 𝑜 b = Base SetCat 2 𝑜 h = Hom SetCat 2 𝑜 x b y b z b w b x h y z h w ¬ x = z y = w ¬ x b y b z b w b x h y z h w x = z y = w
42 rexeq b = Base SetCat 2 𝑜 w b x Hom SetCat 2 𝑜 y z Hom SetCat 2 𝑜 w ¬ x = z y = w w Base SetCat 2 𝑜 x Hom SetCat 2 𝑜 y z Hom SetCat 2 𝑜 w ¬ x = z y = w
43 42 2rexbidv b = Base SetCat 2 𝑜 y b z b w b x Hom SetCat 2 𝑜 y z Hom SetCat 2 𝑜 w ¬ x = z y = w y b z b w Base SetCat 2 𝑜 x Hom SetCat 2 𝑜 y z Hom SetCat 2 𝑜 w ¬ x = z y = w
44 43 rexbidv b = Base SetCat 2 𝑜 x b y b z b w b x Hom SetCat 2 𝑜 y z Hom SetCat 2 𝑜 w ¬ x = z y = w x b y b z b w Base SetCat 2 𝑜 x Hom SetCat 2 𝑜 y z Hom SetCat 2 𝑜 w ¬ x = z y = w
45 rexeq b = Base SetCat 2 𝑜 z b w Base SetCat 2 𝑜 x Hom SetCat 2 𝑜 y z Hom SetCat 2 𝑜 w ¬ x = z y = w z Base SetCat 2 𝑜 w Base SetCat 2 𝑜 x Hom SetCat 2 𝑜 y z Hom SetCat 2 𝑜 w ¬ x = z y = w
46 45 2rexbidv b = Base SetCat 2 𝑜 x b y b z b w Base SetCat 2 𝑜 x Hom SetCat 2 𝑜 y z Hom SetCat 2 𝑜 w ¬ x = z y = w x b y b z Base SetCat 2 𝑜 w Base SetCat 2 𝑜 x Hom SetCat 2 𝑜 y z Hom SetCat 2 𝑜 w ¬ x = z y = w
47 rexeq b = Base SetCat 2 𝑜 y b z Base SetCat 2 𝑜 w Base SetCat 2 𝑜 x Hom SetCat 2 𝑜 y z Hom SetCat 2 𝑜 w ¬ x = z y = w y Base SetCat 2 𝑜 z Base SetCat 2 𝑜 w Base SetCat 2 𝑜 x Hom SetCat 2 𝑜 y z Hom SetCat 2 𝑜 w ¬ x = z y = w
48 47 rexeqbi1dv b = Base SetCat 2 𝑜 x b y b z Base SetCat 2 𝑜 w Base SetCat 2 𝑜 x Hom SetCat 2 𝑜 y z Hom SetCat 2 𝑜 w ¬ x = z y = w x Base SetCat 2 𝑜 y Base SetCat 2 𝑜 z Base SetCat 2 𝑜 w Base SetCat 2 𝑜 x Hom SetCat 2 𝑜 y z Hom SetCat 2 𝑜 w ¬ x = z y = w
49 44 46 48 3bitrd b = Base SetCat 2 𝑜 x b y b z b w b x Hom SetCat 2 𝑜 y z Hom SetCat 2 𝑜 w ¬ x = z y = w x Base SetCat 2 𝑜 y Base SetCat 2 𝑜 z Base SetCat 2 𝑜 w Base SetCat 2 𝑜 x Hom SetCat 2 𝑜 y z Hom SetCat 2 𝑜 w ¬ x = z y = w
50 49 ad2antlr c = SetCat 2 𝑜 b = Base SetCat 2 𝑜 h = Hom SetCat 2 𝑜 x b y b z b w b x Hom SetCat 2 𝑜 y z Hom SetCat 2 𝑜 w ¬ x = z y = w x Base SetCat 2 𝑜 y Base SetCat 2 𝑜 z Base SetCat 2 𝑜 w Base SetCat 2 𝑜 x Hom SetCat 2 𝑜 y z Hom SetCat 2 𝑜 w ¬ x = z y = w
51 33 41 50 3bitr3d c = SetCat 2 𝑜 b = Base SetCat 2 𝑜 h = Hom SetCat 2 𝑜 ¬ x b y b z b w b x h y z h w x = z y = w x Base SetCat 2 𝑜 y Base SetCat 2 𝑜 z Base SetCat 2 𝑜 w Base SetCat 2 𝑜 x Hom SetCat 2 𝑜 y z Hom SetCat 2 𝑜 w ¬ x = z y = w
52 23 25 51 sbcied2 c = SetCat 2 𝑜 b = Base SetCat 2 𝑜 [˙ Hom c / h]˙ ¬ x b y b z b w b x h y z h w x = z y = w x Base SetCat 2 𝑜 y Base SetCat 2 𝑜 z Base SetCat 2 𝑜 w Base SetCat 2 𝑜 x Hom SetCat 2 𝑜 y z Hom SetCat 2 𝑜 w ¬ x = z y = w
53 21 22 52 sbcied2 c = SetCat 2 𝑜 [˙Base c / b]˙ [˙ Hom c / h]˙ ¬ x b y b z b w b x h y z h w x = z y = w x Base SetCat 2 𝑜 y Base SetCat 2 𝑜 z Base SetCat 2 𝑜 w Base SetCat 2 𝑜 x Hom SetCat 2 𝑜 y z Hom SetCat 2 𝑜 w ¬ x = z y = w
54 53 rspcev SetCat 2 𝑜 Cat x Base SetCat 2 𝑜 y Base SetCat 2 𝑜 z Base SetCat 2 𝑜 w Base SetCat 2 𝑜 x Hom SetCat 2 𝑜 y z Hom SetCat 2 𝑜 w ¬ x = z y = w c Cat [˙Base c / b]˙ [˙ Hom c / h]˙ ¬ x b y b z b w b x h y z h w x = z y = w
55 4 20 54 mp2an c Cat [˙Base c / b]˙ [˙ Hom c / h]˙ ¬ x b y b z b w b x h y z h w x = z y = w