Metamath Proof Explorer


Theorem cat1lem

Description: The category of sets in a "universe" containing the empty set and another set does not have pairwise disjoint hom-sets as required in Axiom CAT 1 in Lang p. 53. Lemma for cat1 . (Contributed by Zhi Wang, 15-Sep-2024)

Ref Expression
Hypotheses cat1lem.1 C = SetCat U
cat1lem.2 φ U V
cat1lem.3 B = Base C
cat1lem.4 H = Hom C
cat1lem.5 φ U
cat1lem.6 φ Y U
cat1lem.7 φ Y
Assertion cat1lem φ x B y B z B w B x H y z H w ¬ x = z y = w

Proof

Step Hyp Ref Expression
1 cat1lem.1 C = SetCat U
2 cat1lem.2 φ U V
3 cat1lem.3 B = Base C
4 cat1lem.4 H = Hom C
5 cat1lem.5 φ U
6 cat1lem.6 φ Y U
7 cat1lem.7 φ Y
8 1 2 setcbas φ U = Base C
9 8 3 eqtr4di φ U = B
10 5 9 eleqtrd φ B
11 6 9 eleqtrd φ Y B
12 f0 :
13 1 2 4 5 5 elsetchom φ H :
14 12 13 mpbiri φ H
15 f0 : Y
16 1 2 4 5 6 elsetchom φ H Y : Y
17 15 16 mpbiri φ H Y
18 inelcm H H Y H H Y
19 14 17 18 syl2anc φ H H Y
20 7 neneqd φ ¬ = Y
21 20 intnand φ ¬ = = Y
22 oveq1 z = z H w = H w
23 22 ineq2d z = H z H w = H H w
24 23 neeq1d z = H z H w H H w
25 eqeq2 z = = z =
26 25 anbi1d z = = z = w = = w
27 26 notbid z = ¬ = z = w ¬ = = w
28 24 27 anbi12d z = H z H w ¬ = z = w H H w ¬ = = w
29 oveq2 w = Y H w = H Y
30 29 ineq2d w = Y H H w = H H Y
31 30 neeq1d w = Y H H w H H Y
32 eqeq2 w = Y = w = Y
33 32 anbi2d w = Y = = w = = Y
34 33 notbid w = Y ¬ = = w ¬ = = Y
35 31 34 anbi12d w = Y H H w ¬ = = w H H Y ¬ = = Y
36 28 35 rspc2ev B Y B H H Y ¬ = = Y z B w B H z H w ¬ = z = w
37 10 11 19 21 36 syl112anc φ z B w B H z H w ¬ = z = w
38 oveq1 x = x H y = H y
39 38 ineq1d x = x H y z H w = H y z H w
40 39 neeq1d x = x H y z H w H y z H w
41 eqeq1 x = x = z = z
42 41 anbi1d x = x = z y = w = z y = w
43 42 notbid x = ¬ x = z y = w ¬ = z y = w
44 40 43 anbi12d x = x H y z H w ¬ x = z y = w H y z H w ¬ = z y = w
45 44 2rexbidv x = z B w B x H y z H w ¬ x = z y = w z B w B H y z H w ¬ = z y = w
46 oveq2 y = H y = H
47 46 ineq1d y = H y z H w = H z H w
48 47 neeq1d y = H y z H w H z H w
49 eqeq1 y = y = w = w
50 49 anbi2d y = = z y = w = z = w
51 50 notbid y = ¬ = z y = w ¬ = z = w
52 48 51 anbi12d y = H y z H w ¬ = z y = w H z H w ¬ = z = w
53 52 2rexbidv y = z B w B H y z H w ¬ = z y = w z B w B H z H w ¬ = z = w
54 45 53 rspc2ev B B z B w B H z H w ¬ = z = w x B y B z B w B x H y z H w ¬ x = z y = w
55 10 10 37 54 syl3anc φ x B y B z B w B x H y z H w ¬ x = z y = w