Step |
Hyp |
Ref |
Expression |
1 |
|
catcocl.b |
|
2 |
|
catcocl.h |
|
3 |
|
catcocl.o |
|
4 |
|
catcocl.c |
|
5 |
|
catcocl.x |
|
6 |
|
catcocl.y |
|
7 |
|
catcocl.z |
|
8 |
|
catcocl.f |
|
9 |
|
catcocl.g |
|
10 |
|
catass.w |
|
11 |
|
catass.g |
|
12 |
1 2 3
|
iscat |
|
13 |
12
|
ibi |
|
14 |
4 13
|
syl |
|
15 |
6
|
adantr |
|
16 |
7
|
ad2antrr |
|
17 |
8
|
ad3antrrr |
|
18 |
|
simpllr |
|
19 |
|
simplr |
|
20 |
18 19
|
oveq12d |
|
21 |
17 20
|
eleqtrrd |
|
22 |
9
|
ad4antr |
|
23 |
|
simpllr |
|
24 |
|
simplr |
|
25 |
23 24
|
oveq12d |
|
26 |
22 25
|
eleqtrrd |
|
27 |
10
|
ad5antr |
|
28 |
11
|
ad6antr |
|
29 |
|
simp-4r |
|
30 |
|
simpr |
|
31 |
29 30
|
oveq12d |
|
32 |
28 31
|
eleqtrrd |
|
33 |
|
simp-7r |
|
34 |
|
simp-6r |
|
35 |
33 34
|
opeq12d |
|
36 |
|
simplr |
|
37 |
35 36
|
oveq12d |
|
38 |
|
simp-5r |
|
39 |
34 38
|
opeq12d |
|
40 |
39 36
|
oveq12d |
|
41 |
|
simpr |
|
42 |
|
simpllr |
|
43 |
40 41 42
|
oveq123d |
|
44 |
|
simp-4r |
|
45 |
37 43 44
|
oveq123d |
|
46 |
33 38
|
opeq12d |
|
47 |
46 36
|
oveq12d |
|
48 |
35 38
|
oveq12d |
|
49 |
48 42 44
|
oveq123d |
|
50 |
47 41 49
|
oveq123d |
|
51 |
45 50
|
eqeq12d |
|
52 |
32 51
|
rspcdv |
|
53 |
27 52
|
rspcimdv |
|
54 |
53
|
adantld |
|
55 |
26 54
|
rspcimdv |
|
56 |
21 55
|
rspcimdv |
|
57 |
16 56
|
rspcimdv |
|
58 |
15 57
|
rspcimdv |
|
59 |
58
|
adantld |
|
60 |
5 59
|
rspcimdv |
|
61 |
14 60
|
mpd |
|