| Step |
Hyp |
Ref |
Expression |
| 1 |
|
catcocl.b |
|
| 2 |
|
catcocl.h |
|
| 3 |
|
catcocl.o |
|
| 4 |
|
catcocl.c |
|
| 5 |
|
catcocl.x |
|
| 6 |
|
catcocl.y |
|
| 7 |
|
catcocl.z |
|
| 8 |
|
catcocl.f |
|
| 9 |
|
catcocl.g |
|
| 10 |
|
catass.w |
|
| 11 |
|
catass.g |
|
| 12 |
1 2 3
|
iscat |
|
| 13 |
12
|
ibi |
|
| 14 |
4 13
|
syl |
|
| 15 |
6
|
adantr |
|
| 16 |
7
|
ad2antrr |
|
| 17 |
8
|
ad3antrrr |
|
| 18 |
|
simpllr |
|
| 19 |
|
simplr |
|
| 20 |
18 19
|
oveq12d |
|
| 21 |
17 20
|
eleqtrrd |
|
| 22 |
9
|
ad4antr |
|
| 23 |
|
simpllr |
|
| 24 |
|
simplr |
|
| 25 |
23 24
|
oveq12d |
|
| 26 |
22 25
|
eleqtrrd |
|
| 27 |
10
|
ad5antr |
|
| 28 |
11
|
ad6antr |
|
| 29 |
|
simp-4r |
|
| 30 |
|
simpr |
|
| 31 |
29 30
|
oveq12d |
|
| 32 |
28 31
|
eleqtrrd |
|
| 33 |
|
simp-7r |
|
| 34 |
|
simp-6r |
|
| 35 |
33 34
|
opeq12d |
|
| 36 |
|
simplr |
|
| 37 |
35 36
|
oveq12d |
|
| 38 |
|
simp-5r |
|
| 39 |
34 38
|
opeq12d |
|
| 40 |
39 36
|
oveq12d |
|
| 41 |
|
simpr |
|
| 42 |
|
simpllr |
|
| 43 |
40 41 42
|
oveq123d |
|
| 44 |
|
simp-4r |
|
| 45 |
37 43 44
|
oveq123d |
|
| 46 |
33 38
|
opeq12d |
|
| 47 |
46 36
|
oveq12d |
|
| 48 |
35 38
|
oveq12d |
|
| 49 |
48 42 44
|
oveq123d |
|
| 50 |
47 41 49
|
oveq123d |
|
| 51 |
45 50
|
eqeq12d |
|
| 52 |
32 51
|
rspcdv |
|
| 53 |
27 52
|
rspcimdv |
|
| 54 |
53
|
adantld |
|
| 55 |
26 54
|
rspcimdv |
|
| 56 |
21 55
|
rspcimdv |
|
| 57 |
16 56
|
rspcimdv |
|
| 58 |
15 57
|
rspcimdv |
|
| 59 |
58
|
adantld |
|
| 60 |
5 59
|
rspcimdv |
|
| 61 |
14 60
|
mpd |
|