Metamath Proof Explorer


Theorem catcbas

Description: Set of objects of the category of categories. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses catcbas.c C = CatCat U
catcbas.b B = Base C
catcbas.u φ U V
Assertion catcbas φ B = U Cat

Proof

Step Hyp Ref Expression
1 catcbas.c C = CatCat U
2 catcbas.b B = Base C
3 catcbas.u φ U V
4 eqidd φ U Cat = U Cat
5 eqidd φ x U Cat , y U Cat x Func y = x U Cat , y U Cat x Func y
6 eqidd φ v U Cat × U Cat , z U Cat g 2 nd v Func z , f Func v g func f = v U Cat × U Cat , z U Cat g 2 nd v Func z , f Func v g func f
7 1 3 4 5 6 catcval φ C = Base ndx U Cat Hom ndx x U Cat , y U Cat x Func y comp ndx v U Cat × U Cat , z U Cat g 2 nd v Func z , f Func v g func f
8 catstr Base ndx U Cat Hom ndx x U Cat , y U Cat x Func y comp ndx v U Cat × U Cat , z U Cat g 2 nd v Func z , f Func v g func f Struct 1 15
9 baseid Base = Slot Base ndx
10 snsstp1 Base ndx U Cat Base ndx U Cat Hom ndx x U Cat , y U Cat x Func y comp ndx v U Cat × U Cat , z U Cat g 2 nd v Func z , f Func v g func f
11 inex1g U V U Cat V
12 3 11 syl φ U Cat V
13 7 8 9 10 12 2 strfv3 φ B = U Cat