Metamath Proof Explorer


Theorem catccofval

Description: Composition in the category of categories. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses catcbas.c C=CatCatU
catcbas.b B=BaseC
catcbas.u φUV
catcco.o ·˙=compC
Assertion catccofval φ·˙=vB×B,zBg2ndvFuncz,fFuncvgfuncf

Proof

Step Hyp Ref Expression
1 catcbas.c C=CatCatU
2 catcbas.b B=BaseC
3 catcbas.u φUV
4 catcco.o ·˙=compC
5 1 2 3 catcbas φB=UCat
6 eqid HomC=HomC
7 1 2 3 6 catchomfval φHomC=xB,yBxFuncy
8 eqidd φvB×B,zBg2ndvFuncz,fFuncvgfuncf=vB×B,zBg2ndvFuncz,fFuncvgfuncf
9 1 3 5 7 8 catcval φC=BasendxBHomndxHomCcompndxvB×B,zBg2ndvFuncz,fFuncvgfuncf
10 9 fveq2d φcompC=compBasendxBHomndxHomCcompndxvB×B,zBg2ndvFuncz,fFuncvgfuncf
11 2 fvexi BV
12 11 11 xpex B×BV
13 12 11 mpoex vB×B,zBg2ndvFuncz,fFuncvgfuncfV
14 catstr BasendxBHomndxHomCcompndxvB×B,zBg2ndvFuncz,fFuncvgfuncfStruct115
15 ccoid comp=Slotcompndx
16 snsstp3 compndxvB×B,zBg2ndvFuncz,fFuncvgfuncfBasendxBHomndxHomCcompndxvB×B,zBg2ndvFuncz,fFuncvgfuncf
17 14 15 16 strfv vB×B,zBg2ndvFuncz,fFuncvgfuncfVvB×B,zBg2ndvFuncz,fFuncvgfuncf=compBasendxBHomndxHomCcompndxvB×B,zBg2ndvFuncz,fFuncvgfuncf
18 13 17 ax-mp vB×B,zBg2ndvFuncz,fFuncvgfuncf=compBasendxBHomndxHomCcompndxvB×B,zBg2ndvFuncz,fFuncvgfuncf
19 10 4 18 3eqtr4g φ·˙=vB×B,zBg2ndvFuncz,fFuncvgfuncf