Metamath Proof Explorer


Theorem catccofval

Description: Composition in the category of categories. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses catcbas.c C = CatCat U
catcbas.b B = Base C
catcbas.u φ U V
catcco.o · ˙ = comp C
Assertion catccofval φ · ˙ = v B × B , z B g 2 nd v Func z , f Func v g func f

Proof

Step Hyp Ref Expression
1 catcbas.c C = CatCat U
2 catcbas.b B = Base C
3 catcbas.u φ U V
4 catcco.o · ˙ = comp C
5 1 2 3 catcbas φ B = U Cat
6 eqid Hom C = Hom C
7 1 2 3 6 catchomfval φ Hom C = x B , y B x Func y
8 eqidd φ v B × B , z B g 2 nd v Func z , f Func v g func f = v B × B , z B g 2 nd v Func z , f Func v g func f
9 1 3 5 7 8 catcval φ C = Base ndx B Hom ndx Hom C comp ndx v B × B , z B g 2 nd v Func z , f Func v g func f
10 9 fveq2d φ comp C = comp Base ndx B Hom ndx Hom C comp ndx v B × B , z B g 2 nd v Func z , f Func v g func f
11 2 fvexi B V
12 11 11 xpex B × B V
13 12 11 mpoex v B × B , z B g 2 nd v Func z , f Func v g func f V
14 catstr Base ndx B Hom ndx Hom C comp ndx v B × B , z B g 2 nd v Func z , f Func v g func f Struct 1 15
15 ccoid comp = Slot comp ndx
16 snsstp3 comp ndx v B × B , z B g 2 nd v Func z , f Func v g func f Base ndx B Hom ndx Hom C comp ndx v B × B , z B g 2 nd v Func z , f Func v g func f
17 14 15 16 strfv v B × B , z B g 2 nd v Func z , f Func v g func f V v B × B , z B g 2 nd v Func z , f Func v g func f = comp Base ndx B Hom ndx Hom C comp ndx v B × B , z B g 2 nd v Func z , f Func v g func f
18 13 17 ax-mp v B × B , z B g 2 nd v Func z , f Func v g func f = comp Base ndx B Hom ndx Hom C comp ndx v B × B , z B g 2 nd v Func z , f Func v g func f
19 10 4 18 3eqtr4g φ · ˙ = v B × B , z B g 2 nd v Func z , f Func v g func f