Metamath Proof Explorer


Theorem catchom

Description: Set of arrows of the category of categories (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses catcbas.c C = CatCat U
catcbas.b B = Base C
catcbas.u φ U V
catchomfval.h H = Hom C
catchom.x φ X B
catchom.y φ Y B
Assertion catchom φ X H Y = X Func Y

Proof

Step Hyp Ref Expression
1 catcbas.c C = CatCat U
2 catcbas.b B = Base C
3 catcbas.u φ U V
4 catchomfval.h H = Hom C
5 catchom.x φ X B
6 catchom.y φ Y B
7 1 2 3 4 catchomfval φ H = x B , y B x Func y
8 oveq12 x = X y = Y x Func y = X Func Y
9 8 adantl φ x = X y = Y x Func y = X Func Y
10 ovexd φ X Func Y V
11 7 9 5 6 10 ovmpod φ X H Y = X Func Y