Metamath Proof Explorer


Theorem catchomfval

Description: Set of arrows of the category of categories (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses catcbas.c C = CatCat U
catcbas.b B = Base C
catcbas.u φ U V
catchomfval.h H = Hom C
Assertion catchomfval φ H = x B , y B x Func y

Proof

Step Hyp Ref Expression
1 catcbas.c C = CatCat U
2 catcbas.b B = Base C
3 catcbas.u φ U V
4 catchomfval.h H = Hom C
5 1 2 3 catcbas φ B = U Cat
6 eqidd φ x B , y B x Func y = x B , y B x Func y
7 eqidd φ v B × B , z B g 2 nd v Func z , f Func v g func f = v B × B , z B g 2 nd v Func z , f Func v g func f
8 1 3 5 6 7 catcval φ C = Base ndx B Hom ndx x B , y B x Func y comp ndx v B × B , z B g 2 nd v Func z , f Func v g func f
9 8 fveq2d φ Hom C = Hom Base ndx B Hom ndx x B , y B x Func y comp ndx v B × B , z B g 2 nd v Func z , f Func v g func f
10 4 9 eqtrid φ H = Hom Base ndx B Hom ndx x B , y B x Func y comp ndx v B × B , z B g 2 nd v Func z , f Func v g func f
11 2 fvexi B V
12 11 11 mpoex x B , y B x Func y V
13 catstr Base ndx B Hom ndx x B , y B x Func y comp ndx v B × B , z B g 2 nd v Func z , f Func v g func f Struct 1 15
14 homid Hom = Slot Hom ndx
15 snsstp2 Hom ndx x B , y B x Func y Base ndx B Hom ndx x B , y B x Func y comp ndx v B × B , z B g 2 nd v Func z , f Func v g func f
16 13 14 15 strfv x B , y B x Func y V x B , y B x Func y = Hom Base ndx B Hom ndx x B , y B x Func y comp ndx v B × B , z B g 2 nd v Func z , f Func v g func f
17 12 16 mp1i φ x B , y B x Func y = Hom Base ndx B Hom ndx x B , y B x Func y comp ndx v B × B , z B g 2 nd v Func z , f Func v g func f
18 10 17 eqtr4d φ H = x B , y B x Func y