Step |
Hyp |
Ref |
Expression |
1 |
|
catcocl.b |
|
2 |
|
catcocl.h |
|
3 |
|
catcocl.o |
|
4 |
|
catcocl.c |
|
5 |
|
catcocl.x |
|
6 |
|
catcocl.y |
|
7 |
|
catcocl.z |
|
8 |
|
catcocl.f |
|
9 |
|
catcocl.g |
|
10 |
1 2 3
|
iscat |
|
11 |
10
|
ibi |
|
12 |
|
simpl |
|
13 |
12
|
2ralimi |
|
14 |
13
|
2ralimi |
|
15 |
14
|
adantl |
|
16 |
15
|
ralimi |
|
17 |
4 11 16
|
3syl |
|
18 |
6
|
adantr |
|
19 |
7
|
ad2antrr |
|
20 |
8
|
ad3antrrr |
|
21 |
|
simpllr |
|
22 |
|
simplr |
|
23 |
21 22
|
oveq12d |
|
24 |
20 23
|
eleqtrrd |
|
25 |
9
|
ad3antrrr |
|
26 |
|
simpr |
|
27 |
22 26
|
oveq12d |
|
28 |
25 27
|
eleqtrrd |
|
29 |
28
|
adantr |
|
30 |
|
simp-5r |
|
31 |
|
simp-4r |
|
32 |
30 31
|
opeq12d |
|
33 |
|
simpllr |
|
34 |
32 33
|
oveq12d |
|
35 |
|
simpr |
|
36 |
|
simplr |
|
37 |
34 35 36
|
oveq123d |
|
38 |
30 33
|
oveq12d |
|
39 |
37 38
|
eleq12d |
|
40 |
29 39
|
rspcdv |
|
41 |
24 40
|
rspcimdv |
|
42 |
19 41
|
rspcimdv |
|
43 |
18 42
|
rspcimdv |
|
44 |
5 43
|
rspcimdv |
|
45 |
17 44
|
mpd |
|