Description: Composition of non-empty hom-sets is non-empty. (Contributed by Zhi Wang, 18-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catcocl.b | |
|
| catcocl.h | |
||
| catcocl.o | |
||
| catcocl.c | |
||
| catcocl.x | |
||
| catcocl.y | |
||
| catcocl.z | |
||
| catcone0.f | |
||
| catcone0.g | |
||
| Assertion | catcone0 | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catcocl.b | |
|
| 2 | catcocl.h | |
|
| 3 | catcocl.o | |
|
| 4 | catcocl.c | |
|
| 5 | catcocl.x | |
|
| 6 | catcocl.y | |
|
| 7 | catcocl.z | |
|
| 8 | catcone0.f | |
|
| 9 | catcone0.g | |
|
| 10 | n0 | |
|
| 11 | n0 | |
|
| 12 | 10 11 | anbi12i | |
| 13 | exdistrv | |
|
| 14 | 12 13 | sylbb2 | |
| 15 | 8 9 14 | syl2anc | |
| 16 | 15 | ancli | |
| 17 | 19.42vv | |
|
| 18 | 17 | biimpri | |
| 19 | 4 | adantr | |
| 20 | 5 | adantr | |
| 21 | 6 | adantr | |
| 22 | 7 | adantr | |
| 23 | simprl | |
|
| 24 | simprr | |
|
| 25 | 1 2 3 19 20 21 22 23 24 | catcocl | |
| 26 | 25 | 2eximi | |
| 27 | ne0i | |
|
| 28 | 27 | exlimivv | |
| 29 | 16 18 26 28 | 4syl | |