Metamath Proof Explorer


Theorem catcoppccl

Description: The category of categories for a weak universe is closed under taking opposites. (Contributed by Mario Carneiro, 12-Jan-2017) (Proof shortened by AV, 13-Oct-2024)

Ref Expression
Hypotheses catcoppccl.c C = CatCat U
catcoppccl.b B = Base C
catcoppccl.o O = oppCat X
catcoppccl.1 φ U WUni
catcoppccl.2 φ ω U
catcoppccl.3 φ X B
Assertion catcoppccl φ O B

Proof

Step Hyp Ref Expression
1 catcoppccl.c C = CatCat U
2 catcoppccl.b B = Base C
3 catcoppccl.o O = oppCat X
4 catcoppccl.1 φ U WUni
5 catcoppccl.2 φ ω U
6 catcoppccl.3 φ X B
7 eqid Base X = Base X
8 eqid Hom X = Hom X
9 eqid comp X = comp X
10 7 8 9 3 oppcval X B O = X sSet Hom ndx tpos Hom X sSet comp ndx x Base X × Base X , y Base X tpos y 2 nd x comp X 1 st x
11 6 10 syl φ O = X sSet Hom ndx tpos Hom X sSet comp ndx x Base X × Base X , y Base X tpos y 2 nd x comp X 1 st x
12 1 2 4 6 catcbascl φ X U
13 homid Hom = Slot Hom ndx
14 4 5 wunndx φ ndx U
15 13 4 14 wunstr φ Hom ndx U
16 1 2 4 6 catchomcl φ Hom X U
17 4 16 wuntpos φ tpos Hom X U
18 4 15 17 wunop φ Hom ndx tpos Hom X U
19 4 12 18 wunsets φ X sSet Hom ndx tpos Hom X U
20 ccoid comp = Slot comp ndx
21 20 4 14 wunstr φ comp ndx U
22 1 2 4 6 catcbaselcl φ Base X U
23 4 22 22 wunxp φ Base X × Base X U
24 4 23 22 wunxp φ Base X × Base X × Base X U
25 1 2 4 6 catcccocl φ comp X U
26 4 25 wunrn φ ran comp X U
27 4 26 wununi φ ran comp X U
28 4 27 wundm φ dom ran comp X U
29 4 28 wuncnv φ dom ran comp X -1 U
30 4 wun0 φ U
31 4 30 wunsn φ U
32 4 29 31 wunun φ dom ran comp X -1 U
33 4 27 wunrn φ ran ran comp X U
34 4 32 33 wunxp φ dom ran comp X -1 × ran ran comp X U
35 4 34 wunpw φ 𝒫 dom ran comp X -1 × ran ran comp X U
36 tposssxp tpos y 2 nd x comp X 1 st x dom y 2 nd x comp X 1 st x -1 × ran y 2 nd x comp X 1 st x
37 ovssunirn y 2 nd x comp X 1 st x ran comp X
38 dmss y 2 nd x comp X 1 st x ran comp X dom y 2 nd x comp X 1 st x dom ran comp X
39 37 38 ax-mp dom y 2 nd x comp X 1 st x dom ran comp X
40 cnvss dom y 2 nd x comp X 1 st x dom ran comp X dom y 2 nd x comp X 1 st x -1 dom ran comp X -1
41 unss1 dom y 2 nd x comp X 1 st x -1 dom ran comp X -1 dom y 2 nd x comp X 1 st x -1 dom ran comp X -1
42 39 40 41 mp2b dom y 2 nd x comp X 1 st x -1 dom ran comp X -1
43 37 rnssi ran y 2 nd x comp X 1 st x ran ran comp X
44 xpss12 dom y 2 nd x comp X 1 st x -1 dom ran comp X -1 ran y 2 nd x comp X 1 st x ran ran comp X dom y 2 nd x comp X 1 st x -1 × ran y 2 nd x comp X 1 st x dom ran comp X -1 × ran ran comp X
45 42 43 44 mp2an dom y 2 nd x comp X 1 st x -1 × ran y 2 nd x comp X 1 st x dom ran comp X -1 × ran ran comp X
46 36 45 sstri tpos y 2 nd x comp X 1 st x dom ran comp X -1 × ran ran comp X
47 elpw2g dom ran comp X -1 × ran ran comp X U tpos y 2 nd x comp X 1 st x 𝒫 dom ran comp X -1 × ran ran comp X tpos y 2 nd x comp X 1 st x dom ran comp X -1 × ran ran comp X
48 34 47 syl φ tpos y 2 nd x comp X 1 st x 𝒫 dom ran comp X -1 × ran ran comp X tpos y 2 nd x comp X 1 st x dom ran comp X -1 × ran ran comp X
49 46 48 mpbiri φ tpos y 2 nd x comp X 1 st x 𝒫 dom ran comp X -1 × ran ran comp X
50 49 ralrimivw φ y Base X tpos y 2 nd x comp X 1 st x 𝒫 dom ran comp X -1 × ran ran comp X
51 50 ralrimivw φ x Base X × Base X y Base X tpos y 2 nd x comp X 1 st x 𝒫 dom ran comp X -1 × ran ran comp X
52 eqid x Base X × Base X , y Base X tpos y 2 nd x comp X 1 st x = x Base X × Base X , y Base X tpos y 2 nd x comp X 1 st x
53 52 fmpo x Base X × Base X y Base X tpos y 2 nd x comp X 1 st x 𝒫 dom ran comp X -1 × ran ran comp X x Base X × Base X , y Base X tpos y 2 nd x comp X 1 st x : Base X × Base X × Base X 𝒫 dom ran comp X -1 × ran ran comp X
54 51 53 sylib φ x Base X × Base X , y Base X tpos y 2 nd x comp X 1 st x : Base X × Base X × Base X 𝒫 dom ran comp X -1 × ran ran comp X
55 4 24 35 54 wunf φ x Base X × Base X , y Base X tpos y 2 nd x comp X 1 st x U
56 4 21 55 wunop φ comp ndx x Base X × Base X , y Base X tpos y 2 nd x comp X 1 st x U
57 4 19 56 wunsets φ X sSet Hom ndx tpos Hom X sSet comp ndx x Base X × Base X , y Base X tpos y 2 nd x comp X 1 st x U
58 11 57 eqeltrd φ O U
59 1 2 4 catcbas φ B = U Cat
60 6 59 eleqtrd φ X U Cat
61 60 elin2d φ X Cat
62 3 oppccat X Cat O Cat
63 61 62 syl φ O Cat
64 58 63 elind φ O U Cat
65 64 59 eleqtrrd φ O B