Metamath Proof Explorer


Theorem catidcl

Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses catidcl.b B = Base C
catidcl.h H = Hom C
catidcl.i 1 ˙ = Id C
catidcl.c φ C Cat
catidcl.x φ X B
Assertion catidcl φ 1 ˙ X X H X

Proof

Step Hyp Ref Expression
1 catidcl.b B = Base C
2 catidcl.h H = Hom C
3 catidcl.i 1 ˙ = Id C
4 catidcl.c φ C Cat
5 catidcl.x φ X B
6 eqid comp C = comp C
7 1 2 6 4 3 5 cidval φ 1 ˙ X = ι g X H X | y B f y H X g y X comp C X f = f f X H y f X X comp C y g = f
8 1 2 6 4 5 catideu φ ∃! g X H X y B f y H X g y X comp C X f = f f X H y f X X comp C y g = f
9 riotacl ∃! g X H X y B f y H X g y X comp C X f = f f X H y f X X comp C y g = f ι g X H X | y B f y H X g y X comp C X f = f f X H y f X X comp C y g = f X H X
10 8 9 syl φ ι g X H X | y B f y H X g y X comp C X f = f f X H y f X X comp C y g = f X H X
11 7 10 eqeltrd φ 1 ˙ X X H X