| Step |
Hyp |
Ref |
Expression |
| 1 |
|
catidcl.b |
|
| 2 |
|
catidcl.h |
|
| 3 |
|
catidcl.i |
|
| 4 |
|
catidcl.c |
|
| 5 |
|
catidcl.x |
|
| 6 |
|
catlid.o |
|
| 7 |
|
catlid.y |
|
| 8 |
|
catlid.f |
|
| 9 |
|
oveq2 |
|
| 10 |
|
id |
|
| 11 |
9 10
|
eqeq12d |
|
| 12 |
|
oveq1 |
|
| 13 |
|
opeq1 |
|
| 14 |
13
|
oveq1d |
|
| 15 |
14
|
oveqd |
|
| 16 |
15
|
eqeq1d |
|
| 17 |
12 16
|
raleqbidv |
|
| 18 |
|
simpl |
|
| 19 |
18
|
ralimi |
|
| 20 |
19
|
a1i |
|
| 21 |
20
|
ss2rabi |
|
| 22 |
1 2 6 4 3 7
|
cidval |
|
| 23 |
1 2 6 4 7
|
catideu |
|
| 24 |
|
riotacl2 |
|
| 25 |
23 24
|
syl |
|
| 26 |
22 25
|
eqeltrd |
|
| 27 |
21 26
|
sselid |
|
| 28 |
|
oveq1 |
|
| 29 |
28
|
eqeq1d |
|
| 30 |
29
|
2ralbidv |
|
| 31 |
30
|
elrab |
|
| 32 |
31
|
simprbi |
|
| 33 |
27 32
|
syl |
|
| 34 |
17 33 5
|
rspcdva |
|
| 35 |
11 34 8
|
rspcdva |
|