Description: Left identity property of an identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catidcl.b | |
|
| catidcl.h | |
||
| catidcl.i | |
||
| catidcl.c | |
||
| catidcl.x | |
||
| catlid.o | |
||
| catlid.y | |
||
| catlid.f | |
||
| Assertion | catlid | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catidcl.b | |
|
| 2 | catidcl.h | |
|
| 3 | catidcl.i | |
|
| 4 | catidcl.c | |
|
| 5 | catidcl.x | |
|
| 6 | catlid.o | |
|
| 7 | catlid.y | |
|
| 8 | catlid.f | |
|
| 9 | oveq2 | |
|
| 10 | id | |
|
| 11 | 9 10 | eqeq12d | |
| 12 | oveq1 | |
|
| 13 | opeq1 | |
|
| 14 | 13 | oveq1d | |
| 15 | 14 | oveqd | |
| 16 | 15 | eqeq1d | |
| 17 | 12 16 | raleqbidv | |
| 18 | simpl | |
|
| 19 | 18 | ralimi | |
| 20 | 19 | a1i | |
| 21 | 20 | ss2rabi | |
| 22 | 1 2 6 4 3 7 | cidval | |
| 23 | 1 2 6 4 7 | catideu | |
| 24 | riotacl2 | |
|
| 25 | 23 24 | syl | |
| 26 | 22 25 | eqeltrd | |
| 27 | 21 26 | sselid | |
| 28 | oveq1 | |
|
| 29 | 28 | eqeq1d | |
| 30 | 29 | 2ralbidv | |
| 31 | 30 | elrab | |
| 32 | 31 | simprbi | |
| 33 | 27 32 | syl | |
| 34 | 17 33 5 | rspcdva | |
| 35 | 11 34 8 | rspcdva | |