Step |
Hyp |
Ref |
Expression |
1 |
|
catpropd.1 |
|
2 |
|
catpropd.2 |
|
3 |
|
catpropd.3 |
|
4 |
|
catpropd.4 |
|
5 |
|
simpl |
|
6 |
5
|
2ralimi |
|
7 |
6
|
2ralimi |
|
8 |
7
|
adantl |
|
9 |
8
|
ralimi |
|
10 |
9
|
a1i |
|
11 |
|
simpl |
|
12 |
11
|
2ralimi |
|
13 |
12
|
2ralimi |
|
14 |
13
|
adantl |
|
15 |
14
|
ralimi |
|
16 |
15
|
a1i |
|
17 |
|
nfra1 |
|
18 |
|
nfv |
|
19 |
|
nfra1 |
|
20 |
|
nfv |
|
21 |
|
nfra1 |
|
22 |
|
nfv |
|
23 |
|
oveq1 |
|
24 |
23
|
eleq1d |
|
25 |
24
|
cbvralvw |
|
26 |
|
oveq2 |
|
27 |
26
|
eleq1d |
|
28 |
27
|
ralbidv |
|
29 |
25 28
|
syl5bb |
|
30 |
21 22 29
|
cbvralw |
|
31 |
|
oveq2 |
|
32 |
|
oveq2 |
|
33 |
32
|
oveqd |
|
34 |
|
oveq2 |
|
35 |
33 34
|
eleq12d |
|
36 |
31 35
|
raleqbidv |
|
37 |
36
|
ralbidv |
|
38 |
30 37
|
syl5bb |
|
39 |
38
|
cbvralvw |
|
40 |
|
oveq2 |
|
41 |
|
oveq1 |
|
42 |
|
opeq2 |
|
43 |
42
|
oveq1d |
|
44 |
43
|
oveqd |
|
45 |
44
|
eleq1d |
|
46 |
41 45
|
raleqbidv |
|
47 |
40 46
|
raleqbidv |
|
48 |
47
|
ralbidv |
|
49 |
39 48
|
syl5bb |
|
50 |
19 20 49
|
cbvralw |
|
51 |
|
oveq1 |
|
52 |
|
opeq1 |
|
53 |
52
|
oveq1d |
|
54 |
53
|
oveqd |
|
55 |
|
oveq1 |
|
56 |
54 55
|
eleq12d |
|
57 |
56
|
ralbidv |
|
58 |
51 57
|
raleqbidv |
|
59 |
58
|
ralbidv |
|
60 |
|
ralcom |
|
61 |
59 60
|
bitrdi |
|
62 |
61
|
ralbidv |
|
63 |
50 62
|
syl5bb |
|
64 |
17 18 63
|
cbvralw |
|
65 |
64
|
biimpi |
|
66 |
65
|
ancri |
|
67 |
|
r19.26 |
|
68 |
|
r19.26 |
|
69 |
|
r19.26 |
|
70 |
|
eqid |
|
71 |
|
eqid |
|
72 |
|
eqid |
|
73 |
|
eqid |
|
74 |
1
|
adantr |
|
75 |
74
|
ad4antr |
|
76 |
75
|
ad4antr |
|
77 |
2
|
ad5antr |
|
78 |
77
|
ad4antr |
|
79 |
|
simpllr |
|
80 |
79
|
ad2antrr |
|
81 |
80
|
ad4antr |
|
82 |
|
simp-4r |
|
83 |
82
|
ad4antr |
|
84 |
|
simpllr |
|
85 |
|
simplr |
|
86 |
85
|
ad4antr |
|
87 |
|
simpr |
|
88 |
70 71 72 73 76 78 81 83 84 86 87
|
comfeqval |
|
89 |
|
simpllr |
|
90 |
89
|
ad4antr |
|
91 |
|
simp-4r |
|
92 |
|
simplr |
|
93 |
70 71 72 73 76 78 81 90 84 91 92
|
comfeqval |
|
94 |
88 93
|
eqeq12d |
|
95 |
94
|
ex |
|
96 |
95
|
ralimdva |
|
97 |
|
ralbi |
|
98 |
96 97
|
syl6 |
|
99 |
98
|
ralimdva |
|
100 |
99
|
impancom |
|
101 |
100
|
impr |
|
102 |
|
ralbi |
|
103 |
101 102
|
syl |
|
104 |
103
|
anbi2d |
|
105 |
104
|
ex |
|
106 |
105
|
ralimdva |
|
107 |
69 106
|
syl5bir |
|
108 |
107
|
expdimp |
|
109 |
|
ralbi |
|
110 |
108 109
|
syl6 |
|
111 |
110
|
an32s |
|
112 |
111
|
ralimdva |
|
113 |
|
ralbi |
|
114 |
112 113
|
syl6 |
|
115 |
114
|
expimpd |
|
116 |
115
|
ralimdva |
|
117 |
|
ralbi |
|
118 |
116 117
|
syl6 |
|
119 |
68 118
|
syl5bir |
|
120 |
119
|
ralimdva |
|
121 |
|
ralbi |
|
122 |
120 121
|
syl6 |
|
123 |
67 122
|
syl5bir |
|
124 |
123
|
imp |
|
125 |
124
|
an4s |
|
126 |
125
|
anbi2d |
|
127 |
126
|
expr |
|
128 |
127
|
ralimdva |
|
129 |
128
|
expimpd |
|
130 |
|
ralbi |
|
131 |
66 129 130
|
syl56 |
|
132 |
10 16 131
|
pm5.21ndd |
|
133 |
1
|
homfeqbas |
|
134 |
|
eqid |
|
135 |
|
simpr |
|
136 |
70 71 134 74 135 135
|
homfeqval |
|
137 |
133
|
ad2antrr |
|
138 |
74
|
ad2antrr |
|
139 |
|
simpr |
|
140 |
|
simpllr |
|
141 |
70 71 134 138 139 140
|
homfeqval |
|
142 |
1
|
ad4antr |
|
143 |
2
|
ad4antr |
|
144 |
|
simplr |
|
145 |
|
simp-4r |
|
146 |
|
simpr |
|
147 |
|
simpllr |
|
148 |
70 71 72 73 142 143 144 145 145 146 147
|
comfeqval |
|
149 |
148
|
eqeq1d |
|
150 |
141 149
|
raleqbidva |
|
151 |
70 71 134 138 140 139
|
homfeqval |
|
152 |
1
|
ad4antr |
|
153 |
2
|
ad4antr |
|
154 |
|
simp-4r |
|
155 |
|
simplr |
|
156 |
|
simpllr |
|
157 |
|
simpr |
|
158 |
70 71 72 73 152 153 154 154 155 156 157
|
comfeqval |
|
159 |
158
|
eqeq1d |
|
160 |
151 159
|
raleqbidva |
|
161 |
150 160
|
anbi12d |
|
162 |
137 161
|
raleqbidva |
|
163 |
136 162
|
rexeqbidva |
|
164 |
133
|
adantr |
|
165 |
164
|
adantr |
|
166 |
74
|
ad2antrr |
|
167 |
|
simplr |
|
168 |
70 71 134 166 79 167
|
homfeqval |
|
169 |
|
simpr |
|
170 |
70 71 134 166 167 169
|
homfeqval |
|
171 |
170
|
adantr |
|
172 |
|
simpr |
|
173 |
70 71 72 73 75 77 80 82 89 85 172
|
comfeqval |
|
174 |
70 71 134 166 79 169
|
homfeqval |
|
175 |
174
|
ad2antrr |
|
176 |
173 175
|
eleq12d |
|
177 |
164
|
ad4antr |
|
178 |
75
|
adantr |
|
179 |
|
simp-4r |
|
180 |
|
simpr |
|
181 |
70 71 134 178 179 180
|
homfeqval |
|
182 |
166
|
ad4antr |
|
183 |
2
|
ad7antr |
|
184 |
167
|
ad4antr |
|
185 |
169
|
ad4antr |
|
186 |
|
simplr |
|
187 |
|
simpllr |
|
188 |
|
simpr |
|
189 |
70 71 72 73 182 183 184 185 186 187 188
|
comfeqval |
|
190 |
189
|
oveq1d |
|
191 |
79
|
ad4antr |
|
192 |
|
simp-4r |
|
193 |
70 71 72 73 182 183 191 184 185 192 187
|
comfeqval |
|
194 |
193
|
oveq2d |
|
195 |
190 194
|
eqeq12d |
|
196 |
181 195
|
raleqbidva |
|
197 |
177 196
|
raleqbidva |
|
198 |
176 197
|
anbi12d |
|
199 |
171 198
|
raleqbidva |
|
200 |
168 199
|
raleqbidva |
|
201 |
165 200
|
raleqbidva |
|
202 |
164 201
|
raleqbidva |
|
203 |
163 202
|
anbi12d |
|
204 |
133 203
|
raleqbidva |
|
205 |
132 204
|
bitrd |
|
206 |
70 71 72
|
iscat |
|
207 |
3 206
|
syl |
|
208 |
|
eqid |
|
209 |
208 134 73
|
iscat |
|
210 |
4 209
|
syl |
|
211 |
205 207 210
|
3bitr4d |
|