| Step |
Hyp |
Ref |
Expression |
| 1 |
|
catprs.1 |
|
| 2 |
|
catprs.b |
|
| 3 |
|
catprs.h |
|
| 4 |
|
catprs.c |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
4
|
adantr |
|
| 9 |
|
simpr1 |
|
| 10 |
2
|
adantr |
|
| 11 |
9 10
|
eleqtrd |
|
| 12 |
5 6 7 8 11
|
catidcl |
|
| 13 |
3
|
adantr |
|
| 14 |
13
|
oveqd |
|
| 15 |
12 14
|
eleqtrrd |
|
| 16 |
15
|
ne0d |
|
| 17 |
1
|
adantr |
|
| 18 |
17 9 9
|
catprslem |
|
| 19 |
16 18
|
mpbird |
|
| 20 |
3
|
ad2antrr |
|
| 21 |
20
|
oveqd |
|
| 22 |
2
|
eleq2d |
|
| 23 |
2
|
eleq2d |
|
| 24 |
2
|
eleq2d |
|
| 25 |
22 23 24
|
3anbi123d |
|
| 26 |
25
|
pm5.32i |
|
| 27 |
|
eqid |
|
| 28 |
4
|
ad2antrr |
|
| 29 |
|
simplr1 |
|
| 30 |
|
simplr2 |
|
| 31 |
|
simplr3 |
|
| 32 |
20
|
oveqd |
|
| 33 |
|
simpr2 |
|
| 34 |
17 9 33
|
catprslem |
|
| 35 |
34
|
biimpa |
|
| 36 |
35
|
adantrr |
|
| 37 |
32 36
|
eqnetrrd |
|
| 38 |
26 37
|
sylanbr |
|
| 39 |
20
|
oveqd |
|
| 40 |
|
simpr3 |
|
| 41 |
17 33 40
|
catprslem |
|
| 42 |
41
|
biimpa |
|
| 43 |
42
|
adantrl |
|
| 44 |
39 43
|
eqnetrrd |
|
| 45 |
26 44
|
sylanbr |
|
| 46 |
5 6 27 28 29 30 31 38 45
|
catcone0 |
|
| 47 |
26 46
|
sylanb |
|
| 48 |
21 47
|
eqnetrd |
|
| 49 |
17 9 40
|
catprslem |
|
| 50 |
49
|
adantr |
|
| 51 |
48 50
|
mpbird |
|
| 52 |
51
|
ex |
|
| 53 |
19 52
|
jca |
|