Step |
Hyp |
Ref |
Expression |
1 |
|
catprs.1 |
|
2 |
|
catprs.b |
|
3 |
|
catprs.h |
|
4 |
|
catprs.c |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
4
|
adantr |
|
9 |
|
simpr1 |
|
10 |
2
|
adantr |
|
11 |
9 10
|
eleqtrd |
|
12 |
5 6 7 8 11
|
catidcl |
|
13 |
3
|
adantr |
|
14 |
13
|
oveqd |
|
15 |
12 14
|
eleqtrrd |
|
16 |
15
|
ne0d |
|
17 |
1
|
adantr |
|
18 |
17 9 9
|
catprslem |
|
19 |
16 18
|
mpbird |
|
20 |
3
|
ad2antrr |
|
21 |
20
|
oveqd |
|
22 |
2
|
eleq2d |
|
23 |
2
|
eleq2d |
|
24 |
2
|
eleq2d |
|
25 |
22 23 24
|
3anbi123d |
|
26 |
25
|
pm5.32i |
|
27 |
|
eqid |
|
28 |
4
|
ad2antrr |
|
29 |
|
simplr1 |
|
30 |
|
simplr2 |
|
31 |
|
simplr3 |
|
32 |
20
|
oveqd |
|
33 |
|
simpr2 |
|
34 |
17 9 33
|
catprslem |
|
35 |
34
|
biimpa |
|
36 |
35
|
adantrr |
|
37 |
32 36
|
eqnetrrd |
|
38 |
26 37
|
sylanbr |
|
39 |
20
|
oveqd |
|
40 |
|
simpr3 |
|
41 |
17 33 40
|
catprslem |
|
42 |
41
|
biimpa |
|
43 |
42
|
adantrl |
|
44 |
39 43
|
eqnetrrd |
|
45 |
26 44
|
sylanbr |
|
46 |
5 6 27 28 29 30 31 38 45
|
catcone0 |
|
47 |
26 46
|
sylanb |
|
48 |
21 47
|
eqnetrd |
|
49 |
17 9 40
|
catprslem |
|
50 |
49
|
adantr |
|
51 |
48 50
|
mpbird |
|
52 |
51
|
ex |
|
53 |
19 52
|
jca |
|