Metamath Proof Explorer


Theorem catprs2

Description: A category equipped with the induced preorder, where an object x is defined to be "less than or equal to" y iff there is a morphism from x to y , is a preordered set, or a proset. The category might not be thin. See catprsc and catprsc2 for constructions satisfying the hypothesis "catprs.1". See catprs for a more primitive version. See prsthinc for constructing a thin category from a proset. (Contributed by Zhi Wang, 18-Sep-2024)

Ref Expression
Hypotheses catprs.1 φ x B y B x ˙ y x H y
catprs.b φ B = Base C
catprs.h φ H = Hom C
catprs.c φ C Cat
catprs2.l φ ˙ = C
Assertion catprs2 φ C Proset

Proof

Step Hyp Ref Expression
1 catprs.1 φ x B y B x ˙ y x H y
2 catprs.b φ B = Base C
3 catprs.h φ H = Hom C
4 catprs.c φ C Cat
5 catprs2.l φ ˙ = C
6 1 2 3 4 catprs φ w B v B u B w ˙ w w ˙ v v ˙ u w ˙ u
7 6 ralrimivvva φ w B v B u B w ˙ w w ˙ v v ˙ u w ˙ u
8 2 5 4 isprsd φ C Proset w B v B u B w ˙ w w ˙ v v ˙ u w ˙ u
9 7 8 mpbird φ C Proset