Metamath Proof Explorer


Theorem catprsc2

Description: An alternate construction of the preorder induced by a category. See catprs2 for details. See also catprsc for a different construction. The two constructions are different because df-cat does not require the domain of H to be B X. B . (Contributed by Zhi Wang, 23-Sep-2024)

Ref Expression
Hypothesis catprsc2.1 φ ˙ = x y | x H y
Assertion catprsc2 φ z B w B z ˙ w z H w

Proof

Step Hyp Ref Expression
1 catprsc2.1 φ ˙ = x y | x H y
2 1 breqd φ z ˙ w z x y | x H y w
3 vex z V
4 vex w V
5 oveq12 x = z y = w x H y = z H w
6 5 neeq1d x = z y = w x H y z H w
7 eqid x y | x H y = x y | x H y
8 3 4 6 7 braba z x y | x H y w z H w
9 2 8 bitrdi φ z ˙ w z H w
10 9 adantr φ z B w B z ˙ w z H w
11 10 ralrimivva φ z B w B z ˙ w z H w