Metamath Proof Explorer


Theorem cats1cat

Description: Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Hypotheses cats1cld.1 T = S ++ ⟨“ X ”⟩
cats1cat.2 A Word V
cats1cat.3 S Word V
cats1cat.4 C = B ++ ⟨“ X ”⟩
cats1cat.5 B = A ++ S
Assertion cats1cat C = A ++ T

Proof

Step Hyp Ref Expression
1 cats1cld.1 T = S ++ ⟨“ X ”⟩
2 cats1cat.2 A Word V
3 cats1cat.3 S Word V
4 cats1cat.4 C = B ++ ⟨“ X ”⟩
5 cats1cat.5 B = A ++ S
6 5 oveq1i B ++ ⟨“ X ”⟩ = A ++ S ++ ⟨“ X ”⟩
7 s1cli ⟨“ X ”⟩ Word V
8 ccatass A Word V S Word V ⟨“ X ”⟩ Word V A ++ S ++ ⟨“ X ”⟩ = A ++ S ++ ⟨“ X ”⟩
9 2 3 7 8 mp3an A ++ S ++ ⟨“ X ”⟩ = A ++ S ++ ⟨“ X ”⟩
10 6 9 eqtri B ++ ⟨“ X ”⟩ = A ++ S ++ ⟨“ X ”⟩
11 1 oveq2i A ++ T = A ++ S ++ ⟨“ X ”⟩
12 10 4 11 3eqtr4i C = A ++ T