Metamath Proof Explorer


Theorem cats1cat

Description: Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Hypotheses cats1cld.1 T=S++⟨“X”⟩
cats1cat.2 AWordV
cats1cat.3 SWordV
cats1cat.4 C=B++⟨“X”⟩
cats1cat.5 B=A++S
Assertion cats1cat C=A++T

Proof

Step Hyp Ref Expression
1 cats1cld.1 T=S++⟨“X”⟩
2 cats1cat.2 AWordV
3 cats1cat.3 SWordV
4 cats1cat.4 C=B++⟨“X”⟩
5 cats1cat.5 B=A++S
6 5 oveq1i B++⟨“X”⟩=A++S++⟨“X”⟩
7 s1cli ⟨“X”⟩WordV
8 ccatass AWordVSWordV⟨“X”⟩WordVA++S++⟨“X”⟩=A++S++⟨“X”⟩
9 2 3 7 8 mp3an A++S++⟨“X”⟩=A++S++⟨“X”⟩
10 6 9 eqtri B++⟨“X”⟩=A++S++⟨“X”⟩
11 1 oveq2i A++T=A++S++⟨“X”⟩
12 10 4 11 3eqtr4i C=A++T