Metamath Proof Explorer


Theorem cats1cli

Description: Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Hypotheses cats1cld.1 T = S ++ ⟨“ X ”⟩
cats1cli.2 S Word V
Assertion cats1cli T Word V

Proof

Step Hyp Ref Expression
1 cats1cld.1 T = S ++ ⟨“ X ”⟩
2 cats1cli.2 S Word V
3 s1cli ⟨“ X ”⟩ Word V
4 ccatcl S Word V ⟨“ X ”⟩ Word V S ++ ⟨“ X ”⟩ Word V
5 2 3 4 mp2an S ++ ⟨“ X ”⟩ Word V
6 1 5 eqeltri T Word V