Metamath Proof Explorer


Theorem cats1co

Description: Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Hypotheses cats1cld.1 T = S ++ ⟨“ X ”⟩
cats1cld.2 φ S Word A
cats1cld.3 φ X A
cats1co.4 φ F : A B
cats1co.5 φ F S = U
cats1co.6 V = U ++ ⟨“ F X ”⟩
Assertion cats1co φ F T = V

Proof

Step Hyp Ref Expression
1 cats1cld.1 T = S ++ ⟨“ X ”⟩
2 cats1cld.2 φ S Word A
3 cats1cld.3 φ X A
4 cats1co.4 φ F : A B
5 cats1co.5 φ F S = U
6 cats1co.6 V = U ++ ⟨“ F X ”⟩
7 3 s1cld φ ⟨“ X ”⟩ Word A
8 ccatco S Word A ⟨“ X ”⟩ Word A F : A B F S ++ ⟨“ X ”⟩ = F S ++ F ⟨“ X ”⟩
9 2 7 4 8 syl3anc φ F S ++ ⟨“ X ”⟩ = F S ++ F ⟨“ X ”⟩
10 s1co X A F : A B F ⟨“ X ”⟩ = ⟨“ F X ”⟩
11 3 4 10 syl2anc φ F ⟨“ X ”⟩ = ⟨“ F X ”⟩
12 5 11 oveq12d φ F S ++ F ⟨“ X ”⟩ = U ++ ⟨“ F X ”⟩
13 9 12 eqtrd φ F S ++ ⟨“ X ”⟩ = U ++ ⟨“ F X ”⟩
14 1 coeq2i F T = F S ++ ⟨“ X ”⟩
15 13 14 6 3eqtr4g φ F T = V