Metamath Proof Explorer


Theorem cats1len

Description: The length of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Hypotheses cats1cld.1 T = S ++ ⟨“ X ”⟩
cats1cli.2 S Word V
cats1fvn.3 S = M
cats1len.4 M + 1 = N
Assertion cats1len T = N

Proof

Step Hyp Ref Expression
1 cats1cld.1 T = S ++ ⟨“ X ”⟩
2 cats1cli.2 S Word V
3 cats1fvn.3 S = M
4 cats1len.4 M + 1 = N
5 1 fveq2i T = S ++ ⟨“ X ”⟩
6 s1cli ⟨“ X ”⟩ Word V
7 ccatlen S Word V ⟨“ X ”⟩ Word V S ++ ⟨“ X ”⟩ = S + ⟨“ X ”⟩
8 2 6 7 mp2an S ++ ⟨“ X ”⟩ = S + ⟨“ X ”⟩
9 s1len ⟨“ X ”⟩ = 1
10 3 9 oveq12i S + ⟨“ X ”⟩ = M + 1
11 8 10 eqtri S ++ ⟨“ X ”⟩ = M + 1
12 11 4 eqtri S ++ ⟨“ X ”⟩ = N
13 5 12 eqtri T = N