Step |
Hyp |
Ref |
Expression |
1 |
|
ccatws1cl |
|
2 |
|
wrdf |
|
3 |
1 2
|
syl |
|
4 |
|
ccatws1len |
|
5 |
4
|
oveq2d |
|
6 |
|
lencl |
|
7 |
|
nn0uz |
|
8 |
6 7
|
eleqtrdi |
|
9 |
|
fzosplitsn |
|
10 |
8 9
|
syl |
|
11 |
5 10
|
eqtrd |
|
12 |
11
|
adantr |
|
13 |
12
|
feq2d |
|
14 |
3 13
|
mpbid |
|
15 |
14
|
ffnd |
|
16 |
|
wrdf |
|
17 |
16
|
adantr |
|
18 |
|
eqid |
|
19 |
|
fsng |
|
20 |
18 19
|
mpbiri |
|
21 |
6 20
|
sylan |
|
22 |
|
fzodisjsn |
|
23 |
22
|
a1i |
|
24 |
|
fun |
|
25 |
17 21 23 24
|
syl21anc |
|
26 |
25
|
ffnd |
|
27 |
|
elun |
|
28 |
|
ccats1val1 |
|
29 |
28
|
adantlr |
|
30 |
|
simpr |
|
31 |
|
fzonel |
|
32 |
|
nelne2 |
|
33 |
30 31 32
|
sylancl |
|
34 |
33
|
necomd |
|
35 |
|
fvunsn |
|
36 |
34 35
|
syl |
|
37 |
29 36
|
eqtr4d |
|
38 |
|
fvexd |
|
39 |
|
simpr |
|
40 |
17
|
fdmd |
|
41 |
40
|
eleq2d |
|
42 |
31 41
|
mtbiri |
|
43 |
|
fsnunfv |
|
44 |
38 39 42 43
|
syl3anc |
|
45 |
|
simpl |
|
46 |
|
s1cl |
|
47 |
46
|
adantl |
|
48 |
|
s1len |
|
49 |
|
1nn |
|
50 |
48 49
|
eqeltri |
|
51 |
|
lbfzo0 |
|
52 |
50 51
|
mpbir |
|
53 |
52
|
a1i |
|
54 |
|
ccatval3 |
|
55 |
45 47 53 54
|
syl3anc |
|
56 |
|
s1fv |
|
57 |
56
|
adantl |
|
58 |
55 57
|
eqtrd |
|
59 |
6
|
adantr |
|
60 |
59
|
nn0cnd |
|
61 |
60
|
addid2d |
|
62 |
61
|
fveq2d |
|
63 |
44 58 62
|
3eqtr2rd |
|
64 |
|
elsni |
|
65 |
64
|
fveq2d |
|
66 |
64
|
fveq2d |
|
67 |
65 66
|
eqeq12d |
|
68 |
63 67
|
syl5ibrcom |
|
69 |
68
|
imp |
|
70 |
37 69
|
jaodan |
|
71 |
27 70
|
sylan2b |
|
72 |
15 26 71
|
eqfnfvd |
|