Metamath Proof Explorer


Theorem cau3

Description: Convert between three-quantifier and four-quantifier versions of the Cauchy criterion. (In particular, the four-quantifier version has no occurrence of j in the assertion, so it can be used with rexanuz and friends.) (Contributed by Mario Carneiro, 15-Feb-2014)

Ref Expression
Hypothesis cau3.1 Z = M
Assertion cau3 x + j Z k j F k F k F j < x x + j Z k j F k m k F k F m < x

Proof

Step Hyp Ref Expression
1 cau3.1 Z = M
2 uzssz M
3 1 2 eqsstri Z
4 id F k F k
5 eleq1 F k = F j F k F j
6 eleq1 F k = F m F k F m
7 abssub F j F k F j F k = F k F j
8 7 3adant1 F j F k F j F k = F k F j
9 abssub F m F j F m F j = F j F m
10 9 3adant1 F m F j F m F j = F j F m
11 abs3lem F k F m F j x F k F j < x 2 F j F m < x 2 F k F m < x
12 11 3adant1 F k F m F j x F k F j < x 2 F j F m < x 2 F k F m < x
13 3 4 5 6 8 10 12 cau3lem x + j Z k j F k F k F j < x x + j Z k j F k m k F k F m < x
14 13 mptru x + j Z k j F k F k F j < x x + j Z k j F k m k F k F m < x