Metamath Proof Explorer


Theorem caublcls

Description: The convergent point of a sequence of nested balls is in the closures of any of the balls (i.e. it is in the intersection of the closures). Indeed, it is the only point in the intersection because a metric space is Hausdorff, but we don't prove this here. (Contributed by Mario Carneiro, 21-Jan-2014) (Revised by Mario Carneiro, 1-May-2014)

Ref Expression
Hypotheses caubl.2 φ D ∞Met X
caubl.3 φ F : X × +
caubl.4 φ n ball D F n + 1 ball D F n
caublcls.6 J = MetOpen D
Assertion caublcls φ 1 st F t J P A P cls J ball D F A

Proof

Step Hyp Ref Expression
1 caubl.2 φ D ∞Met X
2 caubl.3 φ F : X × +
3 caubl.4 φ n ball D F n + 1 ball D F n
4 caublcls.6 J = MetOpen D
5 eqid A = A
6 1 3ad2ant1 φ 1 st F t J P A D ∞Met X
7 4 mopntopon D ∞Met X J TopOn X
8 6 7 syl φ 1 st F t J P A J TopOn X
9 simp3 φ 1 st F t J P A A
10 9 nnzd φ 1 st F t J P A A
11 simp2 φ 1 st F t J P A 1 st F t J P
12 2fveq3 r = A ball D F r = ball D F A
13 12 sseq1d r = A ball D F r ball D F A ball D F A ball D F A
14 13 imbi2d r = A φ A ball D F r ball D F A φ A ball D F A ball D F A
15 2fveq3 r = k ball D F r = ball D F k
16 15 sseq1d r = k ball D F r ball D F A ball D F k ball D F A
17 16 imbi2d r = k φ A ball D F r ball D F A φ A ball D F k ball D F A
18 2fveq3 r = k + 1 ball D F r = ball D F k + 1
19 18 sseq1d r = k + 1 ball D F r ball D F A ball D F k + 1 ball D F A
20 19 imbi2d r = k + 1 φ A ball D F r ball D F A φ A ball D F k + 1 ball D F A
21 ssid ball D F A ball D F A
22 21 2a1i A φ A ball D F A ball D F A
23 eluznn A k A k
24 fvoveq1 n = k F n + 1 = F k + 1
25 24 fveq2d n = k ball D F n + 1 = ball D F k + 1
26 2fveq3 n = k ball D F n = ball D F k
27 25 26 sseq12d n = k ball D F n + 1 ball D F n ball D F k + 1 ball D F k
28 27 rspccva n ball D F n + 1 ball D F n k ball D F k + 1 ball D F k
29 3 23 28 syl2an φ A k A ball D F k + 1 ball D F k
30 29 anassrs φ A k A ball D F k + 1 ball D F k
31 sstr2 ball D F k + 1 ball D F k ball D F k ball D F A ball D F k + 1 ball D F A
32 30 31 syl φ A k A ball D F k ball D F A ball D F k + 1 ball D F A
33 32 expcom k A φ A ball D F k ball D F A ball D F k + 1 ball D F A
34 33 a2d k A φ A ball D F k ball D F A φ A ball D F k + 1 ball D F A
35 14 17 20 17 22 34 uzind4 k A φ A ball D F k ball D F A
36 35 impcom φ A k A ball D F k ball D F A
37 36 3adantl2 φ 1 st F t J P A k A ball D F k ball D F A
38 6 adantr φ 1 st F t J P A k A D ∞Met X
39 simpl1 φ 1 st F t J P A k A φ
40 39 2 syl φ 1 st F t J P A k A F : X × +
41 23 3ad2antl3 φ 1 st F t J P A k A k
42 40 41 ffvelrnd φ 1 st F t J P A k A F k X × +
43 xp1st F k X × + 1 st F k X
44 42 43 syl φ 1 st F t J P A k A 1 st F k X
45 xp2nd F k X × + 2 nd F k +
46 42 45 syl φ 1 st F t J P A k A 2 nd F k +
47 blcntr D ∞Met X 1 st F k X 2 nd F k + 1 st F k 1 st F k ball D 2 nd F k
48 38 44 46 47 syl3anc φ 1 st F t J P A k A 1 st F k 1 st F k ball D 2 nd F k
49 fvco3 F : X × + k 1 st F k = 1 st F k
50 40 41 49 syl2anc φ 1 st F t J P A k A 1 st F k = 1 st F k
51 1st2nd2 F k X × + F k = 1 st F k 2 nd F k
52 42 51 syl φ 1 st F t J P A k A F k = 1 st F k 2 nd F k
53 52 fveq2d φ 1 st F t J P A k A ball D F k = ball D 1 st F k 2 nd F k
54 df-ov 1 st F k ball D 2 nd F k = ball D 1 st F k 2 nd F k
55 53 54 eqtr4di φ 1 st F t J P A k A ball D F k = 1 st F k ball D 2 nd F k
56 48 50 55 3eltr4d φ 1 st F t J P A k A 1 st F k ball D F k
57 37 56 sseldd φ 1 st F t J P A k A 1 st F k ball D F A
58 2 ffvelrnda φ A F A X × +
59 58 3adant2 φ 1 st F t J P A F A X × +
60 1st2nd2 F A X × + F A = 1 st F A 2 nd F A
61 59 60 syl φ 1 st F t J P A F A = 1 st F A 2 nd F A
62 61 fveq2d φ 1 st F t J P A ball D F A = ball D 1 st F A 2 nd F A
63 df-ov 1 st F A ball D 2 nd F A = ball D 1 st F A 2 nd F A
64 62 63 eqtr4di φ 1 st F t J P A ball D F A = 1 st F A ball D 2 nd F A
65 xp1st F A X × + 1 st F A X
66 59 65 syl φ 1 st F t J P A 1 st F A X
67 xp2nd F A X × + 2 nd F A +
68 59 67 syl φ 1 st F t J P A 2 nd F A +
69 68 rpxrd φ 1 st F t J P A 2 nd F A *
70 blssm D ∞Met X 1 st F A X 2 nd F A * 1 st F A ball D 2 nd F A X
71 6 66 69 70 syl3anc φ 1 st F t J P A 1 st F A ball D 2 nd F A X
72 64 71 eqsstrd φ 1 st F t J P A ball D F A X
73 5 8 10 11 57 72 lmcls φ 1 st F t J P A P cls J ball D F A