Step |
Hyp |
Ref |
Expression |
1 |
|
caubl.2 |
|
2 |
|
caubl.3 |
|
3 |
|
caubl.4 |
|
4 |
|
caublcls.6 |
|
5 |
|
eqid |
|
6 |
1
|
3ad2ant1 |
|
7 |
4
|
mopntopon |
|
8 |
6 7
|
syl |
|
9 |
|
simp3 |
|
10 |
9
|
nnzd |
|
11 |
|
simp2 |
|
12 |
|
2fveq3 |
|
13 |
12
|
sseq1d |
|
14 |
13
|
imbi2d |
|
15 |
|
2fveq3 |
|
16 |
15
|
sseq1d |
|
17 |
16
|
imbi2d |
|
18 |
|
2fveq3 |
|
19 |
18
|
sseq1d |
|
20 |
19
|
imbi2d |
|
21 |
|
ssid |
|
22 |
21
|
2a1i |
|
23 |
|
eluznn |
|
24 |
|
fvoveq1 |
|
25 |
24
|
fveq2d |
|
26 |
|
2fveq3 |
|
27 |
25 26
|
sseq12d |
|
28 |
27
|
rspccva |
|
29 |
3 23 28
|
syl2an |
|
30 |
29
|
anassrs |
|
31 |
|
sstr2 |
|
32 |
30 31
|
syl |
|
33 |
32
|
expcom |
|
34 |
33
|
a2d |
|
35 |
14 17 20 17 22 34
|
uzind4 |
|
36 |
35
|
impcom |
|
37 |
36
|
3adantl2 |
|
38 |
6
|
adantr |
|
39 |
|
simpl1 |
|
40 |
39 2
|
syl |
|
41 |
23
|
3ad2antl3 |
|
42 |
40 41
|
ffvelrnd |
|
43 |
|
xp1st |
|
44 |
42 43
|
syl |
|
45 |
|
xp2nd |
|
46 |
42 45
|
syl |
|
47 |
|
blcntr |
|
48 |
38 44 46 47
|
syl3anc |
|
49 |
|
fvco3 |
|
50 |
40 41 49
|
syl2anc |
|
51 |
|
1st2nd2 |
|
52 |
42 51
|
syl |
|
53 |
52
|
fveq2d |
|
54 |
|
df-ov |
|
55 |
53 54
|
eqtr4di |
|
56 |
48 50 55
|
3eltr4d |
|
57 |
37 56
|
sseldd |
|
58 |
2
|
ffvelrnda |
|
59 |
58
|
3adant2 |
|
60 |
|
1st2nd2 |
|
61 |
59 60
|
syl |
|
62 |
61
|
fveq2d |
|
63 |
|
df-ov |
|
64 |
62 63
|
eqtr4di |
|
65 |
|
xp1st |
|
66 |
59 65
|
syl |
|
67 |
|
xp2nd |
|
68 |
59 67
|
syl |
|
69 |
68
|
rpxrd |
|
70 |
|
blssm |
|
71 |
6 66 69 70
|
syl3anc |
|
72 |
64 71
|
eqsstrd |
|
73 |
5 8 10 11 57 72
|
lmcls |
|