Step |
Hyp |
Ref |
Expression |
1 |
|
cau3.1 |
|
2 |
|
abscl |
|
3 |
2
|
ralimi |
|
4 |
1
|
r19.29uz |
|
5 |
4
|
ex |
|
6 |
5
|
ralimdv |
|
7 |
1
|
caubnd2 |
|
8 |
6 7
|
syl6 |
|
9 |
|
fzssuz |
|
10 |
9 1
|
sseqtrri |
|
11 |
|
ssralv |
|
12 |
10 11
|
ax-mp |
|
13 |
|
fzfi |
|
14 |
|
fimaxre3 |
|
15 |
13 14
|
mpan |
|
16 |
|
peano2re |
|
17 |
16
|
adantl |
|
18 |
|
ltp1 |
|
19 |
18
|
adantl |
|
20 |
16
|
adantl |
|
21 |
|
lelttr |
|
22 |
20 21
|
mpd3an3 |
|
23 |
19 22
|
mpan2d |
|
24 |
23
|
expcom |
|
25 |
24
|
ralimdv |
|
26 |
25
|
impcom |
|
27 |
|
ralim |
|
28 |
26 27
|
syl |
|
29 |
|
brralrspcev |
|
30 |
17 28 29
|
syl6an |
|
31 |
30
|
rexlimdva |
|
32 |
15 31
|
mpd |
|
33 |
12 32
|
syl |
|
34 |
|
max1 |
|
35 |
34
|
3adant3 |
|
36 |
|
simp3 |
|
37 |
|
simp1 |
|
38 |
|
ifcl |
|
39 |
38
|
ancoms |
|
40 |
39
|
3adant3 |
|
41 |
|
ltletr |
|
42 |
36 37 40 41
|
syl3anc |
|
43 |
35 42
|
mpan2d |
|
44 |
|
max2 |
|
45 |
44
|
3adant3 |
|
46 |
|
simp2 |
|
47 |
|
ltletr |
|
48 |
36 46 40 47
|
syl3anc |
|
49 |
45 48
|
mpan2d |
|
50 |
43 49
|
jaod |
|
51 |
50
|
3expia |
|
52 |
51
|
ralimdv |
|
53 |
|
ralim |
|
54 |
52 53
|
syl6 |
|
55 |
|
brralrspcev |
|
56 |
55
|
ex |
|
57 |
39 56
|
syl |
|
58 |
54 57
|
syl6d |
|
59 |
|
uzssz |
|
60 |
1 59
|
eqsstri |
|
61 |
60
|
sseli |
|
62 |
60
|
sseli |
|
63 |
|
uztric |
|
64 |
61 62 63
|
syl2anr |
|
65 |
|
simpr |
|
66 |
65 1
|
eleqtrdi |
|
67 |
|
elfzuzb |
|
68 |
67
|
baib |
|
69 |
66 68
|
syl |
|
70 |
69
|
orbi1d |
|
71 |
64 70
|
mpbird |
|
72 |
71
|
ex |
|
73 |
|
pm3.48 |
|
74 |
72 73
|
syl9 |
|
75 |
74
|
alimdv |
|
76 |
|
df-ral |
|
77 |
|
df-ral |
|
78 |
76 77
|
anbi12i |
|
79 |
|
19.26 |
|
80 |
78 79
|
bitr4i |
|
81 |
|
df-ral |
|
82 |
75 80 81
|
3imtr4g |
|
83 |
82
|
3impib |
|
84 |
83
|
imim1i |
|
85 |
84
|
3expd |
|
86 |
58 85
|
syl6 |
|
87 |
86
|
com23 |
|
88 |
87
|
expimpd |
|
89 |
88
|
com3r |
|
90 |
89
|
com34 |
|
91 |
90
|
rexlimdv |
|
92 |
33 91
|
mpd |
|
93 |
92
|
rexlimdvv |
|
94 |
3 8 93
|
sylsyld |
|
95 |
94
|
imp |
|