Metamath Proof Explorer


Theorem caubnd

Description: A Cauchy sequence of complex numbers is bounded. (Contributed by NM, 4-Apr-2005) (Revised by Mario Carneiro, 14-Feb-2014)

Ref Expression
Hypothesis cau3.1 Z = M
Assertion caubnd k Z F k x + j Z k j F k F j < x y k Z F k < y

Proof

Step Hyp Ref Expression
1 cau3.1 Z = M
2 abscl F k F k
3 2 ralimi k Z F k k Z F k
4 1 r19.29uz k Z F k j Z k j F k F j < x j Z k j F k F k F j < x
5 4 ex k Z F k j Z k j F k F j < x j Z k j F k F k F j < x
6 5 ralimdv k Z F k x + j Z k j F k F j < x x + j Z k j F k F k F j < x
7 1 caubnd2 x + j Z k j F k F k F j < x z j Z k j F k < z
8 6 7 syl6 k Z F k x + j Z k j F k F j < x z j Z k j F k < z
9 fzssuz M j M
10 9 1 sseqtrri M j Z
11 ssralv M j Z k Z F k k M j F k
12 10 11 ax-mp k Z F k k M j F k
13 fzfi M j Fin
14 fimaxre3 M j Fin k M j F k x k M j F k x
15 13 14 mpan k M j F k x k M j F k x
16 peano2re x x + 1
17 16 adantl k M j F k x x + 1
18 ltp1 x x < x + 1
19 18 adantl F k x x < x + 1
20 16 adantl F k x x + 1
21 lelttr F k x x + 1 F k x x < x + 1 F k < x + 1
22 20 21 mpd3an3 F k x F k x x < x + 1 F k < x + 1
23 19 22 mpan2d F k x F k x F k < x + 1
24 23 expcom x F k F k x F k < x + 1
25 24 ralimdv x k M j F k k M j F k x F k < x + 1
26 25 impcom k M j F k x k M j F k x F k < x + 1
27 ralim k M j F k x F k < x + 1 k M j F k x k M j F k < x + 1
28 26 27 syl k M j F k x k M j F k x k M j F k < x + 1
29 brralrspcev x + 1 k M j F k < x + 1 w k M j F k < w
30 17 28 29 syl6an k M j F k x k M j F k x w k M j F k < w
31 30 rexlimdva k M j F k x k M j F k x w k M j F k < w
32 15 31 mpd k M j F k w k M j F k < w
33 12 32 syl k Z F k w k M j F k < w
34 max1 w z w if w z z w
35 34 3adant3 w z F k w if w z z w
36 simp3 w z F k F k
37 simp1 w z F k w
38 ifcl z w if w z z w
39 38 ancoms w z if w z z w
40 39 3adant3 w z F k if w z z w
41 ltletr F k w if w z z w F k < w w if w z z w F k < if w z z w
42 36 37 40 41 syl3anc w z F k F k < w w if w z z w F k < if w z z w
43 35 42 mpan2d w z F k F k < w F k < if w z z w
44 max2 w z z if w z z w
45 44 3adant3 w z F k z if w z z w
46 simp2 w z F k z
47 ltletr F k z if w z z w F k < z z if w z z w F k < if w z z w
48 36 46 40 47 syl3anc w z F k F k < z z if w z z w F k < if w z z w
49 45 48 mpan2d w z F k F k < z F k < if w z z w
50 43 49 jaod w z F k F k < w F k < z F k < if w z z w
51 50 3expia w z F k F k < w F k < z F k < if w z z w
52 51 ralimdv w z k Z F k k Z F k < w F k < z F k < if w z z w
53 ralim k Z F k < w F k < z F k < if w z z w k Z F k < w F k < z k Z F k < if w z z w
54 52 53 syl6 w z k Z F k k Z F k < w F k < z k Z F k < if w z z w
55 brralrspcev if w z z w k Z F k < if w z z w y k Z F k < y
56 55 ex if w z z w k Z F k < if w z z w y k Z F k < y
57 39 56 syl w z k Z F k < if w z z w y k Z F k < y
58 54 57 syl6d w z k Z F k k Z F k < w F k < z y k Z F k < y
59 uzssz M
60 1 59 eqsstri Z
61 60 sseli k Z k
62 60 sseli j Z j
63 uztric k j j k k j
64 61 62 63 syl2anr j Z k Z j k k j
65 simpr j Z k Z k Z
66 65 1 eleqtrdi j Z k Z k M
67 elfzuzb k M j k M j k
68 67 baib k M k M j j k
69 66 68 syl j Z k Z k M j j k
70 69 orbi1d j Z k Z k M j k j j k k j
71 64 70 mpbird j Z k Z k M j k j
72 71 ex j Z k Z k M j k j
73 pm3.48 k M j F k < w k j F k < z k M j k j F k < w F k < z
74 72 73 syl9 j Z k M j F k < w k j F k < z k Z F k < w F k < z
75 74 alimdv j Z k k M j F k < w k j F k < z k k Z F k < w F k < z
76 df-ral k M j F k < w k k M j F k < w
77 df-ral k j F k < z k k j F k < z
78 76 77 anbi12i k M j F k < w k j F k < z k k M j F k < w k k j F k < z
79 19.26 k k M j F k < w k j F k < z k k M j F k < w k k j F k < z
80 78 79 bitr4i k M j F k < w k j F k < z k k M j F k < w k j F k < z
81 df-ral k Z F k < w F k < z k k Z F k < w F k < z
82 75 80 81 3imtr4g j Z k M j F k < w k j F k < z k Z F k < w F k < z
83 82 3impib j Z k M j F k < w k j F k < z k Z F k < w F k < z
84 83 imim1i k Z F k < w F k < z y k Z F k < y j Z k M j F k < w k j F k < z y k Z F k < y
85 84 3expd k Z F k < w F k < z y k Z F k < y j Z k M j F k < w k j F k < z y k Z F k < y
86 58 85 syl6 w z k Z F k j Z k M j F k < w k j F k < z y k Z F k < y
87 86 com23 w z j Z k Z F k k M j F k < w k j F k < z y k Z F k < y
88 87 expimpd w z j Z k Z F k k M j F k < w k j F k < z y k Z F k < y
89 88 com3r k Z F k w z j Z k M j F k < w k j F k < z y k Z F k < y
90 89 com34 k Z F k w k M j F k < w z j Z k j F k < z y k Z F k < y
91 90 rexlimdv k Z F k w k M j F k < w z j Z k j F k < z y k Z F k < y
92 33 91 mpd k Z F k z j Z k j F k < z y k Z F k < y
93 92 rexlimdvv k Z F k z j Z k j F k < z y k Z F k < y
94 3 8 93 sylsyld k Z F k x + j Z k j F k F j < x y k Z F k < y
95 94 imp k Z F k x + j Z k j F k F j < x y k Z F k < y