Metamath Proof Explorer


Theorem caucfil

Description: A Cauchy sequence predicate can be expressed in terms of the Cauchy filter predicate for a suitably chosen filter. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses caucfil.1 Z = M
caucfil.2 L = X FilMap F Z
Assertion caucfil D ∞Met X M F : Z X F Cau D L CauFil D

Proof

Step Hyp Ref Expression
1 caucfil.1 Z = M
2 caucfil.2 L = X FilMap F Z
3 df-3an k dom F F k X m k F k D F m < x k dom F F k X m k F k D F m < x
4 1 uztrn2 j Z k j k Z
5 4 adantll D ∞Met X M F : Z X j Z k j k Z
6 simpll3 D ∞Met X M F : Z X j Z k j F : Z X
7 6 fdmd D ∞Met X M F : Z X j Z k j dom F = Z
8 5 7 eleqtrrd D ∞Met X M F : Z X j Z k j k dom F
9 6 5 ffvelrnd D ∞Met X M F : Z X j Z k j F k X
10 8 9 jca D ∞Met X M F : Z X j Z k j k dom F F k X
11 10 biantrurd D ∞Met X M F : Z X j Z k j m k F k D F m < x k dom F F k X m k F k D F m < x
12 uzss k j k j
13 12 adantl D ∞Met X M F : Z X j Z k j k j
14 13 sseld D ∞Met X M F : Z X j Z k j m k m j
15 14 pm4.71rd D ∞Met X M F : Z X j Z k j m k m j m k
16 15 imbi1d D ∞Met X M F : Z X j Z k j m k F k D F m < x m j m k F k D F m < x
17 impexp m j m k F k D F m < x m j m k F k D F m < x
18 16 17 bitrdi D ∞Met X M F : Z X j Z k j m k F k D F m < x m j m k F k D F m < x
19 18 ralbidv2 D ∞Met X M F : Z X j Z k j m k F k D F m < x m j m k F k D F m < x
20 11 19 bitr3d D ∞Met X M F : Z X j Z k j k dom F F k X m k F k D F m < x m j m k F k D F m < x
21 3 20 syl5bb D ∞Met X M F : Z X j Z k j k dom F F k X m k F k D F m < x m j m k F k D F m < x
22 21 ralbidva D ∞Met X M F : Z X j Z k j k dom F F k X m k F k D F m < x k j m j m k F k D F m < x
23 r19.26-2 k j m j m k F k D F m < x k m F m D F k < x k j m j m k F k D F m < x k j m j k m F m D F k < x
24 eleq1w u = k u m k m
25 fveq2 u = k F u = F k
26 25 oveq2d u = k F m D F u = F m D F k
27 26 breq1d u = k F m D F u < x F m D F k < x
28 24 27 imbi12d u = k u m F m D F u < x k m F m D F k < x
29 28 cbvralvw u j u m F m D F u < x k j k m F m D F k < x
30 29 ralbii m j u j u m F m D F u < x m j k j k m F m D F k < x
31 fveq2 m = k m = k
32 31 eleq2d m = k u m u k
33 fveq2 m = k F m = F k
34 33 oveq1d m = k F m D F u = F k D F u
35 34 breq1d m = k F m D F u < x F k D F u < x
36 32 35 imbi12d m = k u m F m D F u < x u k F k D F u < x
37 eleq1w u = m u k m k
38 fveq2 u = m F u = F m
39 38 oveq2d u = m F k D F u = F k D F m
40 39 breq1d u = m F k D F u < x F k D F m < x
41 37 40 imbi12d u = m u k F k D F u < x m k F k D F m < x
42 36 41 cbvral2vw m j u j u m F m D F u < x k j m j m k F k D F m < x
43 ralcom m j k j k m F m D F k < x k j m j k m F m D F k < x
44 30 42 43 3bitr3i k j m j m k F k D F m < x k j m j k m F m D F k < x
45 44 anbi2i k j m j m k F k D F m < x k j m j m k F k D F m < x k j m j m k F k D F m < x k j m j k m F m D F k < x
46 anidm k j m j m k F k D F m < x k j m j m k F k D F m < x k j m j m k F k D F m < x
47 23 45 46 3bitr2i k j m j m k F k D F m < x k m F m D F k < x k j m j m k F k D F m < x
48 simpll1 D ∞Met X M F : Z X j Z k j m j D ∞Met X
49 simpll3 D ∞Met X M F : Z X j Z k j m j F : Z X
50 1 uztrn2 j Z m j m Z
51 50 ad2ant2l D ∞Met X M F : Z X j Z k j m j m Z
52 49 51 ffvelrnd D ∞Met X M F : Z X j Z k j m j F m X
53 9 adantrr D ∞Met X M F : Z X j Z k j m j F k X
54 xmetsym D ∞Met X F m X F k X F m D F k = F k D F m
55 48 52 53 54 syl3anc D ∞Met X M F : Z X j Z k j m j F m D F k = F k D F m
56 55 breq1d D ∞Met X M F : Z X j Z k j m j F m D F k < x F k D F m < x
57 56 imbi2d D ∞Met X M F : Z X j Z k j m j k m F m D F k < x k m F k D F m < x
58 57 anbi2d D ∞Met X M F : Z X j Z k j m j m k F k D F m < x k m F m D F k < x m k F k D F m < x k m F k D F m < x
59 jaob m k k m F k D F m < x m k F k D F m < x k m F k D F m < x
60 eluzelz k j k
61 eluzelz m j m
62 uztric k m m k k m
63 60 61 62 syl2an k j m j m k k m
64 63 adantl D ∞Met X M F : Z X j Z k j m j m k k m
65 pm5.5 m k k m m k k m F k D F m < x F k D F m < x
66 64 65 syl D ∞Met X M F : Z X j Z k j m j m k k m F k D F m < x F k D F m < x
67 59 66 bitr3id D ∞Met X M F : Z X j Z k j m j m k F k D F m < x k m F k D F m < x F k D F m < x
68 58 67 bitrd D ∞Met X M F : Z X j Z k j m j m k F k D F m < x k m F m D F k < x F k D F m < x
69 68 2ralbidva D ∞Met X M F : Z X j Z k j m j m k F k D F m < x k m F m D F k < x k j m j F k D F m < x
70 47 69 bitr3id D ∞Met X M F : Z X j Z k j m j m k F k D F m < x k j m j F k D F m < x
71 22 70 bitrd D ∞Met X M F : Z X j Z k j k dom F F k X m k F k D F m < x k j m j F k D F m < x
72 71 rexbidva D ∞Met X M F : Z X j Z k j k dom F F k X m k F k D F m < x j Z k j m j F k D F m < x
73 uzf : 𝒫
74 ffn : 𝒫 Fn
75 73 74 ax-mp Fn
76 uzssz M
77 1 76 eqsstri Z
78 raleq u = j m u F k D F m < x m j F k D F m < x
79 78 raleqbi1dv u = j k u m u F k D F m < x k j m j F k D F m < x
80 79 rexima Fn Z u Z k u m u F k D F m < x j Z k j m j F k D F m < x
81 75 77 80 mp2an u Z k u m u F k D F m < x j Z k j m j F k D F m < x
82 72 81 bitr4di D ∞Met X M F : Z X j Z k j k dom F F k X m k F k D F m < x u Z k u m u F k D F m < x
83 82 ralbidv D ∞Met X M F : Z X x + j Z k j k dom F F k X m k F k D F m < x x + u Z k u m u F k D F m < x
84 elfvdm D ∞Met X X dom ∞Met
85 84 adantr D ∞Met X M X dom ∞Met
86 cnex V
87 85 86 jctir D ∞Met X M X dom ∞Met V
88 zsscn
89 77 88 sstri Z
90 89 jctr F : Z X F : Z X Z
91 elpm2r X dom ∞Met V F : Z X Z F X 𝑝𝑚
92 87 90 91 syl2an D ∞Met X M F : Z X F X 𝑝𝑚
93 simpl D ∞Met X M D ∞Met X
94 simpr D ∞Met X M M
95 1 93 94 iscau3 D ∞Met X M F Cau D F X 𝑝𝑚 x + j Z k j k dom F F k X m k F k D F m < x
96 95 baibd D ∞Met X M F X 𝑝𝑚 F Cau D x + j Z k j k dom F F k X m k F k D F m < x
97 92 96 syldan D ∞Met X M F : Z X F Cau D x + j Z k j k dom F F k X m k F k D F m < x
98 97 3impa D ∞Met X M F : Z X F Cau D x + j Z k j k dom F F k X m k F k D F m < x
99 2 eleq1i L CauFil D X FilMap F Z CauFil D
100 1 uzfbas M Z fBas Z
101 fmcfil D ∞Met X Z fBas Z F : Z X X FilMap F Z CauFil D x + u Z k u m u F k D F m < x
102 100 101 syl3an2 D ∞Met X M F : Z X X FilMap F Z CauFil D x + u Z k u m u F k D F m < x
103 99 102 syl5bb D ∞Met X M F : Z X L CauFil D x + u Z k u m u F k D F m < x
104 83 98 103 3bitr4d D ∞Met X M F : Z X F Cau D L CauFil D