Step |
Hyp |
Ref |
Expression |
1 |
|
caucvgb.1 |
|
2 |
|
eldm2g |
|
3 |
2
|
ibi |
|
4 |
|
df-br |
|
5 |
|
simpll |
|
6 |
|
1rp |
|
7 |
6
|
a1i |
|
8 |
|
eqidd |
|
9 |
|
simpr |
|
10 |
1 5 7 8 9
|
climi |
|
11 |
|
simpl |
|
12 |
11
|
ralimi |
|
13 |
12
|
reximi |
|
14 |
10 13
|
syl |
|
15 |
14
|
ex |
|
16 |
4 15
|
syl5bir |
|
17 |
16
|
exlimdv |
|
18 |
3 17
|
syl5 |
|
19 |
|
fveq2 |
|
20 |
19
|
raleqdv |
|
21 |
20
|
cbvrexvw |
|
22 |
21
|
a1i |
|
23 |
|
simpl |
|
24 |
23
|
ralimi |
|
25 |
24
|
reximi |
|
26 |
25
|
ralimi |
|
27 |
6
|
a1i |
|
28 |
22 26 27
|
rspcdva |
|
29 |
28
|
a1i |
|
30 |
|
eluzelz |
|
31 |
30 1
|
eleq2s |
|
32 |
|
eqid |
|
33 |
32
|
climcau |
|
34 |
31 33
|
sylan |
|
35 |
32
|
r19.29uz |
|
36 |
35
|
ex |
|
37 |
36
|
ralimdv |
|
38 |
34 37
|
mpan9 |
|
39 |
38
|
an32s |
|
40 |
39
|
adantll |
|
41 |
|
simplrr |
|
42 |
|
fveq2 |
|
43 |
42
|
eleq1d |
|
44 |
43
|
rspccva |
|
45 |
41 44
|
sylan |
|
46 |
|
simpr |
|
47 |
46
|
ralimi |
|
48 |
42
|
fvoveq1d |
|
49 |
48
|
breq1d |
|
50 |
49
|
cbvralvw |
|
51 |
47 50
|
sylib |
|
52 |
51
|
reximi |
|
53 |
52
|
ralimi |
|
54 |
53
|
adantl |
|
55 |
|
fveq2 |
|
56 |
|
fveq2 |
|
57 |
56
|
oveq2d |
|
58 |
57
|
fveq2d |
|
59 |
58
|
breq1d |
|
60 |
55 59
|
raleqbidv |
|
61 |
60
|
cbvrexvw |
|
62 |
|
breq2 |
|
63 |
62
|
rexralbidv |
|
64 |
61 63
|
syl5bb |
|
65 |
64
|
cbvralvw |
|
66 |
54 65
|
sylib |
|
67 |
|
simpll |
|
68 |
32 45 66 67
|
caucvg |
|
69 |
68
|
adantlll |
|
70 |
40 69
|
impbida |
|
71 |
1 32
|
cau4 |
|
72 |
71
|
ad2antrl |
|
73 |
70 72
|
bitr4d |
|
74 |
73
|
rexlimdvaa |
|
75 |
18 29 74
|
pm5.21ndd |
|