Metamath Proof Explorer


Theorem caucvgr

Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of Gleason p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006) (Revised by Mario Carneiro, 8-May-2016)

Ref Expression
Hypotheses caucvgr.1 φ A
caucvgr.2 φ F : A
caucvgr.3 φ sup A * < = +∞
caucvgr.4 φ x + j A k A j k F k F j < x
Assertion caucvgr φ F dom

Proof

Step Hyp Ref Expression
1 caucvgr.1 φ A
2 caucvgr.2 φ F : A
3 caucvgr.3 φ sup A * < = +∞
4 caucvgr.4 φ x + j A k A j k F k F j < x
5 2 feqmptd φ F = n A F n
6 2 ffvelrnda φ n A F n
7 6 replimd φ n A F n = F n + i F n
8 7 mpteq2dva φ n A F n = n A F n + i F n
9 5 8 eqtrd φ F = n A F n + i F n
10 fvexd φ n A F n V
11 ovexd φ n A i F n V
12 ref :
13 resub F k F j F k F j = F k F j
14 13 fveq2d F k F j F k F j = F k F j
15 subcl F k F j F k F j
16 absrele F k F j F k F j F k F j
17 15 16 syl F k F j F k F j F k F j
18 14 17 eqbrtrrd F k F j F k F j F k F j
19 1 2 3 4 12 18 caucvgrlem2 φ n A F n F
20 ax-icn i
21 20 elexi i V
22 21 a1i φ n A i V
23 fvexd φ n A F n V
24 rlimconst A i n A i i
25 1 20 24 sylancl φ n A i i
26 imf :
27 imsub F k F j F k F j = F k F j
28 27 fveq2d F k F j F k F j = F k F j
29 absimle F k F j F k F j F k F j
30 15 29 syl F k F j F k F j F k F j
31 28 30 eqbrtrrd F k F j F k F j F k F j
32 1 2 3 4 26 31 caucvgrlem2 φ n A F n F
33 22 23 25 32 rlimmul φ n A i F n i F
34 10 11 19 33 rlimadd φ n A F n + i F n F + i F
35 9 34 eqbrtrd φ F F + i F
36 rlimrel Rel
37 36 releldmi F F + i F F dom
38 35 37 syl φ F dom