Step |
Hyp |
Ref |
Expression |
1 |
|
caucvgr.1 |
|
2 |
|
caucvgr.2 |
|
3 |
|
caucvgr.3 |
|
4 |
|
caucvgr.4 |
|
5 |
2
|
feqmptd |
|
6 |
2
|
ffvelrnda |
|
7 |
6
|
replimd |
|
8 |
7
|
mpteq2dva |
|
9 |
5 8
|
eqtrd |
|
10 |
|
fvexd |
|
11 |
|
ovexd |
|
12 |
|
ref |
|
13 |
|
resub |
|
14 |
13
|
fveq2d |
|
15 |
|
subcl |
|
16 |
|
absrele |
|
17 |
15 16
|
syl |
|
18 |
14 17
|
eqbrtrrd |
|
19 |
1 2 3 4 12 18
|
caucvgrlem2 |
|
20 |
|
ax-icn |
|
21 |
20
|
elexi |
|
22 |
21
|
a1i |
|
23 |
|
fvexd |
|
24 |
|
rlimconst |
|
25 |
1 20 24
|
sylancl |
|
26 |
|
imf |
|
27 |
|
imsub |
|
28 |
27
|
fveq2d |
|
29 |
|
absimle |
|
30 |
15 29
|
syl |
|
31 |
28 30
|
eqbrtrrd |
|
32 |
1 2 3 4 26 31
|
caucvgrlem2 |
|
33 |
22 23 25 32
|
rlimmul |
|
34 |
10 11 19 33
|
rlimadd |
|
35 |
9 34
|
eqbrtrd |
|
36 |
|
rlimrel |
|
37 |
36
|
releldmi |
|
38 |
35 37
|
syl |
|