Step |
Hyp |
Ref |
Expression |
1 |
|
caucvgr.1 |
|
2 |
|
caucvgr.2 |
|
3 |
|
caucvgr.3 |
|
4 |
|
caucvgr.4 |
|
5 |
|
caucvgrlem2.5 |
|
6 |
|
caucvgrlem2.6 |
|
7 |
|
fcompt |
|
8 |
5 2 7
|
sylancr |
|
9 |
|
fco |
|
10 |
5 2 9
|
sylancr |
|
11 |
2
|
ad2antrr |
|
12 |
|
simprr |
|
13 |
11 12
|
ffvelrnd |
|
14 |
|
simprl |
|
15 |
11 14
|
ffvelrnd |
|
16 |
13 15 6
|
syl2anc |
|
17 |
5
|
ffvelrni |
|
18 |
13 17
|
syl |
|
19 |
5
|
ffvelrni |
|
20 |
15 19
|
syl |
|
21 |
18 20
|
resubcld |
|
22 |
21
|
recnd |
|
23 |
22
|
abscld |
|
24 |
13 15
|
subcld |
|
25 |
24
|
abscld |
|
26 |
|
rpre |
|
27 |
26
|
ad2antlr |
|
28 |
|
lelttr |
|
29 |
23 25 27 28
|
syl3anc |
|
30 |
16 29
|
mpand |
|
31 |
|
fvco3 |
|
32 |
11 12 31
|
syl2anc |
|
33 |
|
fvco3 |
|
34 |
11 14 33
|
syl2anc |
|
35 |
32 34
|
oveq12d |
|
36 |
35
|
fveq2d |
|
37 |
36
|
breq1d |
|
38 |
30 37
|
sylibrd |
|
39 |
38
|
imim2d |
|
40 |
39
|
anassrs |
|
41 |
40
|
ralimdva |
|
42 |
41
|
reximdva |
|
43 |
42
|
ralimdva |
|
44 |
4 43
|
mpd |
|
45 |
1 10 3 44
|
caurcvgr |
|
46 |
|
rlimrel |
|
47 |
46
|
releldmi |
|
48 |
45 47
|
syl |
|
49 |
|
ax-resscn |
|
50 |
|
fss |
|
51 |
10 49 50
|
sylancl |
|
52 |
51 3
|
rlimdm |
|
53 |
48 52
|
mpbid |
|
54 |
8 53
|
eqbrtrrd |
|