Metamath Proof Explorer


Theorem caucvgrlem2

Description: Lemma for caucvgr . (Contributed by NM, 4-Apr-2005) (Proof shortened by Mario Carneiro, 8-May-2016)

Ref Expression
Hypotheses caucvgr.1 φ A
caucvgr.2 φ F : A
caucvgr.3 φ sup A * < = +∞
caucvgr.4 φ x + j A k A j k F k F j < x
caucvgrlem2.5 H :
caucvgrlem2.6 F k F j H F k H F j F k F j
Assertion caucvgrlem2 φ n A H F n H F

Proof

Step Hyp Ref Expression
1 caucvgr.1 φ A
2 caucvgr.2 φ F : A
3 caucvgr.3 φ sup A * < = +∞
4 caucvgr.4 φ x + j A k A j k F k F j < x
5 caucvgrlem2.5 H :
6 caucvgrlem2.6 F k F j H F k H F j F k F j
7 fcompt H : F : A H F = n A H F n
8 5 2 7 sylancr φ H F = n A H F n
9 fco H : F : A H F : A
10 5 2 9 sylancr φ H F : A
11 2 ad2antrr φ x + j A k A F : A
12 simprr φ x + j A k A k A
13 11 12 ffvelrnd φ x + j A k A F k
14 simprl φ x + j A k A j A
15 11 14 ffvelrnd φ x + j A k A F j
16 13 15 6 syl2anc φ x + j A k A H F k H F j F k F j
17 5 ffvelrni F k H F k
18 13 17 syl φ x + j A k A H F k
19 5 ffvelrni F j H F j
20 15 19 syl φ x + j A k A H F j
21 18 20 resubcld φ x + j A k A H F k H F j
22 21 recnd φ x + j A k A H F k H F j
23 22 abscld φ x + j A k A H F k H F j
24 13 15 subcld φ x + j A k A F k F j
25 24 abscld φ x + j A k A F k F j
26 rpre x + x
27 26 ad2antlr φ x + j A k A x
28 lelttr H F k H F j F k F j x H F k H F j F k F j F k F j < x H F k H F j < x
29 23 25 27 28 syl3anc φ x + j A k A H F k H F j F k F j F k F j < x H F k H F j < x
30 16 29 mpand φ x + j A k A F k F j < x H F k H F j < x
31 fvco3 F : A k A H F k = H F k
32 11 12 31 syl2anc φ x + j A k A H F k = H F k
33 fvco3 F : A j A H F j = H F j
34 11 14 33 syl2anc φ x + j A k A H F j = H F j
35 32 34 oveq12d φ x + j A k A H F k H F j = H F k H F j
36 35 fveq2d φ x + j A k A H F k H F j = H F k H F j
37 36 breq1d φ x + j A k A H F k H F j < x H F k H F j < x
38 30 37 sylibrd φ x + j A k A F k F j < x H F k H F j < x
39 38 imim2d φ x + j A k A j k F k F j < x j k H F k H F j < x
40 39 anassrs φ x + j A k A j k F k F j < x j k H F k H F j < x
41 40 ralimdva φ x + j A k A j k F k F j < x k A j k H F k H F j < x
42 41 reximdva φ x + j A k A j k F k F j < x j A k A j k H F k H F j < x
43 42 ralimdva φ x + j A k A j k F k F j < x x + j A k A j k H F k H F j < x
44 4 43 mpd φ x + j A k A j k H F k H F j < x
45 1 10 3 44 caurcvgr φ H F lim sup H F
46 rlimrel Rel
47 46 releldmi H F lim sup H F H F dom
48 45 47 syl φ H F dom
49 ax-resscn
50 fss H F : A H F : A
51 10 49 50 sylancl φ H F : A
52 51 3 rlimdm φ H F dom H F H F
53 48 52 mpbid φ H F H F
54 8 53 eqbrtrrd φ n A H F n H F